
Jürgen Sturm

University of Freiburg, Germany

A Probabilistic Framework for
Learning Kinematic Models of

Articulated Objects

Motivation

� Cabinets

� Drawers

� Doors

� Windows

� Fridge

� Table

� Garage door

Service robots in domestic environments
need the capability to deal with articulated
objects

Problem: Furniture is different in each home

Motivation

� Why learn a kinematic model?

� Improve interaction skills over time

� Generalize to unseen objects

� Allows robot to answer questions, such as:

� Is this a door?

� Did I succeed in opening the door?

� In what state is the door?

� In which other states can the door be?

� How far can I open this door?

Goal of our Approach:
Learn a articulated scene model

wall/floor

door cabinet

door handle drawer drawer

rotational rigid

rotational prismatic prismatic

Goal of our Approach:
Learn a kinematic scene model

wall/floor

door cabinet

door handle drawer drawer

rotational rigid

rotational prismatic prismatic

1. learn models describing the relationship between
two object parts

2. infer the kinematic topology of the scene (which
object parts are connected in which way)

Related Work (1)

� Door and door handle detection

� Robust control

� Door locations specified in map

� Scripted turn and push motion

[Meeussen, Wise, Glaser, Chitta, McGann, Mihelich,
Marder-Eppstein, Muja, Eruhimov, Foote, Hsu, Rusu, Marthi,

Bradski, Konolige, Gerkey, Berger, ICRA 2009]

Related Work (2)

� Motion Capture and Video

� 2D/3D Feature Tracks

� Recover stick figures

� Learns graphical model

[Ross, Tarlow and Zemel, IJCV 2010]

Related Work (3)

� Manipulator + Camera

� Interactive Perception

� Tracks KLT-Features

� Min-cut algorithm on feature graph

[Katz and Brock, RSS 2008]

Features of our approach

� Fully 3D

� Accurate kinematic models

� Recover structure

� Control object with a manipulator

� Open-source, well-documented, ..

Topics covered in this talk

Bayesian learning of kinematic models for:

1. Articulated links

� Accurate model fitting for articulated links

� Bayesian model comparison

2. Articulated objects

(Consisting of multiple articulated links)

� Structure selection

� Estimating the effective DOFs

3. Integration in ROS

Part 1: Problem Definition

� Given a sequence of pose observations of
an articulated link …

where is a 3D pose including
position and orientation

� … estimate the most likely model and
parameter vector

Process Model

� Kinematic model

� Configuration

� True pose

� Observed pose

Bayesian Model Inference

Solving

can be split into two steps of inference:

1. Model Fitting

2. Model Comparison

� Fit different model classes:

� Rigid Model

� Prismatic Model

� Rotational Model

� Gaussian Process Model

� Each model has a

� Forward kinematics function

� Inverse kinematics function

Model Fitting (1)

Model Fitting (2)

� Maximum-likelihood estimator for each
model (MLESAC)

� Robust data likelihood

� Assume that the process noise is sampled from a
mixture of a uniform distribution and a Gaussian
distribution

Prismatic Model

� Parameters:

� origin a

� axis e of movement

� Forward kinematics function

� Inverse kinematics function

Rotational Model

� Parameters

� center of rotation and
rotation axis c

� rigid transform r

� Forward kinematics function

� Inverse kinematics function

Garage Door: A Two-bar Link

� Garage door runs in a vertical and a
horizontal slider

� Neither rotational, nor prismatic motion

� There are objects which cannot be
explained well by “standard” models

A Non-parametric Model (1)

� For a articulation model, we need to define

� A forward kinematics function

� An inverse kinematics function

� Assume that the data lies on
(or close to) a low dimensional manifold in

A Non-parametric Model (1)

� Non-linear dimensionality reduction
technique

� Locally Linear Embedding (LLE; other
alternatives: PCA, ISOMAP, t-SNE, ..)

� Example: 2D manifold embedded in 3D
space

[Roweis, 2000]

A Non-parametric Model (3)

� Find latent low dimensional coordinates on
the manifold � provides configurations of
the object

[Roweis, 2000]

A Non-parametric Model (4)

� Then learn a Gaussian process regression
modeling the forward kinematics

data points
mean
variance

[Rasmussen, 2006]

A Non-parametric Model (5)

� Find latent low dimensional coordinates on the
manifold � dimensionality reduction using locally
linear embedding (LLE) provides inverse kinematics

� Then learn a Gaussian process regression modeling
the forward kinematics

� How to evaluate the data likelihood?

� Configuration is latent � integrate over all
possible configurations

� Approximate integral by evaluating at most
likely configuration

Model Evaluation (1)

Model Evaluation (2)

� Estimate configuration

� Predict expected pose

� Compare prediction with observation

� Approximate data likelihood

Model Selection

� Select the model that maximizes the
posterior probability

� Solve this using the Bayesian Information
Criterion (BIC)

� Select model that minimizes the BIC

Neg. data likelihood Penalty on
model complexity

Examples 1/3

fridge drawer

Examples 2/3

dishwasher .. and tray

Examples 3/3

water tap valve of a radiator

Online Estimation and Control

� Learn kinematic model while manipulating
articulated object

Experimental Setup

� Experimental setup:

� Given: 3D location of handle + initial direction

� Robot estimates kinematic model online and in
real-time

� Robot uses estimated model for control

� 5 different mechanisms

� Video:

� Success rate: 37 out of 40 trials (92.5%)

Experimental Results

Joint work with Advait Jain and Charlie Kemp

Exploiting Prior Information

� So far, robot learns a new model for each
newly object from scratch

� However: most articulated objects in a
household belong to a few different classes

� Doors are of same/similar size

� Standardized dimensions of kitchen interior

� Idea:

� Find small set of representative models

� Utilize previously learned models when handling
new objects

Model Clustering

� Given two observed trajectories, should we
select one or two models?

� Bayesian model comparison

Then: Learn single model
(single set of parameters
but might fit data worse)

Else: Learn two models
(double set of parameters
but might fit data better)

If

Model Clustering (2)

� Incremental clustering

� Can be done online

� Estimated model benefits from larger
dataset

� Bayesian model comparison:

If

Then: Merge with model j

Else: Add new model

Model Clustering

� 37 trajectories

� Correctly clustered into 5 models

Exploiting Prior Information

� Using prior information significantly
improves prediction accuracy

Part 2: Articulated Objects

� So far, we considered only articulated
objects consisting of a single link, thus of
two parts

� Now, extend to p>2 parts…

Process Model for 2 parts

� Kinematic model

� Configuration

� True poses

� True transformation

� Observed poses

Process Model for 3-chain

Process Model for 4-chain

Kinematic Graph (1)

� Kinematic structure is unknown � consider
all possible structures, and select the best
one

� Simplified graphical model (object parts and
models only)

rigid model

prismatic model

rotational model

Gaussian process model

cabinet drawer 1 drawer 2

Kinematic Graph (2)

� Describe articulated objects as a kinematic
graph

� Vertices correspond to object
parts

� Edges correspond to
articulated links

� Each edge has an associated articulated link
model

Problem Definition

� Given a sequence of t pose observations of
an articulated object consisting of p parts..

� Estimate the most likely kinematic graph G

Bayesian Model Inference

Solving

can be split into four steps of inference:

1. Link-wise model fitting (as before)

2. Link-wise model selection (as before)

3. Object-wise structure selection

4. Object-wise DOF estimation

Structure Selection (1)

� Select the graph that maximizes the
posterior probability

� Select graph that minimizes the BIC

Structure Selection (2)

� How can we find the graph that minimizes
the BIC?

� Given a graph, how can we compute its
data likelihood?

Structure Selection (3)

� How can we find the graph that minimizes
the BIC?

For kinematic trees:

� Minimum spanning tree problem

� Efficient and optimal solution

For general kinematic graphs (including
closed kinematic chains):

� Full evaluation over all possible structures

� Or approximation using search heuristic

Structure Selection (4)

� Given a graph, how can we compute its
data likelihood?

� Insight: edges of kinematic trees are
mutually independent

� This corresponds to a minimum spanning
tree problem

� Fully connected graph

� Assign edge costs

� Compute all models between all edges

� Select the minimum spanning tree

Example: Cabinet with Drawers

Example: Car Door

Example: Office Door

Example: Desk Lamp

Estimate effective DOFs

� Closed chain objects might have less DOFs
than the sum of their links

3 links
3 DOF

4 links
1 DOF

Estimate effective DOFs (2)

� Closed chain objects might have less DOFs
than sum of their links

� Lower dimensional configuration space
increases likelihood of a single configuration

� Additionally optimize number of DOFs
during structure selection

Example: Open Kinematic Chain

Example: Closed Kinematic
Chain

Evaluation of DOFs

Articulated Objects in ROS

� Stacks and Packages

� Messages and Services

� Nodes

� Useful Scripts

� Tutorials and Demos

� http:// www.ros.org/wiki/articulation

The articulation Stack

� Packages in the articulation Stack:

� articulation_msg

� articulation_models

� articulation_rviz_plugin

� articulation_structure

� articulation_tutorials

Observation Sequence: TrackMsg

articulation_msgs/TrackMsg.msg:

Header header # Timestamp and frame

int32 id # user-specified track id

geometry_msgs/Pose[] pose # observed trajectory
geometry_msgs/Pose[] pose_projected # projected trajectory
geometry_msgs/Pose[] pose_resampled # re-sampled trajectory (for visualization)
sensor_msgs/ChannelFloat32[] channels # additional information

� Generic message for observed track

� Track identification number

� Observed poses

� Additional information (configuration q, ..)

Dz = (z
1, . . . , zT)

Kinematic Model: ModelMsg

articulation_msgs/ModelMsg.msg:

Header header # frame and timestamp

int32 id # user specified model id
string name # name of the model class (e.g. "rotational",

"prismatic", "pca_gp", "rigid")
articulation_msgs/TrackMsg track # data trajectory underlying the model
articulation_msgs/ParamMsg[] params # model parameters

� Generic message for kinematic models

� Observation sequence

� Model class

� Model parameters

Dy = (y
1:T

1
, . . . ,y1:T

n
)

θ̂

M̂

Kinematic Parameters: ParamMsg

articulation_msgs/ParamMsg.msg:

uint8 PRIOR=0 # indicates a prior model parameter
(e.g., "sigma_position")

uint8 PARAM=1 # indicates a estimated model parameter
(e.g., "rot_radius", the estimated radius)

uint8 EVAL=2 # indicates a cached evaluation of the model, given
the current trajectory
(e.g., "loglikelihood", the log likelihood of the
data, given the model and its parameters)

string name # name of the parameter
float64 value # value of the parameter
uint8 type # type of the parameter (PRIOR, PARAM, EVAL)

� Generic message for parameters

� Type (prior, estimated, posterior)

� Name (e.g., “sigma_position”, “rot_radius”)

� Value (e.g., 0.01, 0.50,..)

Kinematic Object:
ArticulatedObjectMessage

articulation_msgs/ParamMsg.msg:

Header header # frame and timestamp

articulation_msgs/TrackMsg[] parts # observed trajectories for each object part
articulation_msgs/ParamMsg[] params # global parameters
articulation_msgs/ModelMsg[] models # models, describing relationships between parts
visualization_msgs/MarkerArray markers # marker visualization of models/object

� Generic message for articulated objects

� Multiple parts

� Multiple articulated links

Message Processing

� Articulated Link: model_learner_msg
� Subscribes to: /track (queue size 1)

� Publishes: /model

� Parameters:

� sigma_position (in meter)

� sigma_orientation (in radians)

� filter_models (“rigid prismatic rotational pca_gp”)

� What does it do?
� Fits model parameters

� Estimates latent configurations of observations

� Projects observations on model

� Computes data likelihood and BIC score

� Selects the best model

Services (1)

� Articulated Link: model_learner_srv
� Services:

� model_fit

� model_select

� model_eval

� Parameters:

� sigma_position (in meter)

� sigma_orientation (in radians)

� filter_models (“rigid prismatic rotational pca_gp”)

� What does it do?
� Same as model_learner_msg: fits models,

estimates configurations, evaluates data
likelihood, computes BIC score, selects best
model

Services (2)

� Articulated Object: structure_learner
� Services:

� fit_models

� get_spanning_tree

� get_fast_graph

� get_graph

� Parameters:
� sigma_position (in meter)

� sigma_orientation (in radians)

� filter_models (“rigid prismatic rotational pca_gp”)

� What does it do?

� Fits models to all possible links, estimates
configurations, computes data likelihood,
estimates DOFs, selects best kinematic graph

Visualizing Data Trajectories

� roslaunch articulation_tutorials visualize_tracks.lau nch

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
Getting started with Articulation Models

articulation_tutorials/demo_fitting/data/second_set /left_door/003.log:

0.340249373856 -0.244008978915 -0.161821700704
0.3392470804 -0.243254309122 -0.161196313185
0.332328278289 -0.241196125961 -0.162826339162
0.331730517233 -0.240507339642 -0.162059956061
0.331761001802 -0.240391004141 -0.162215317578
0.326387758676 -0.237534821253 -0.162894338193
0.326692999754 -0.237495774032 -0.162320263447
0.326458151573 -0.236229292153 -0.161988473368
0.32643300294 -0.235474401346 -0.16226527964
0.326458151573 -0.236229292153 -0.161988473368
0.322475144873 -0.234904628909 -0.163001371167
0.322396297379 -0.234578781317 -0.162827883268
0.322338438997 -0.233729046115 -0.163104731452
0.31716772013 -0.233590696194 -0.162613189246
0.317140380085 -0.233046575927 -0.162728855923
0.317360184512 -0.232950213241 -0.162209399286
0.317291194395 -0.231950928639 -0.162542156939
0.31231370597 -0.229828694249 -0.162634424792
0.312256194198 -0.228424279769 -0.162708107274
0.312015344514 -0.227107330115 -0.162428803724
0.306629576897 -0.226190024443 -0.162693417499
0.307101002477 -0.225363586474 -0.163391447816
0.307314399481 -0.224601172119 -0.16312582421
0.307924291011 -0.223965969122 -0.162834221149
0.302440458046 -0.223043961032 -0.163117545449
0.303022295196 -0.220621222734 -0.162497012325
0.299320666256 -0.220486293623 -0.162602818856
0.299403314865 -0.219964271221 -0.163190275044
0.299065053516 -0.219226704563 -0.163054516178
[...]

Visualizing Data Trajectories

/track [TrackMsg]

simple_publisher.py

rviz + ArticulatedTrack plugin

publishes
trajectory

Visualizing Data Trajectories

� roslaunch articulation_tutorials visualize_tracks.lau nch

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
Getting started with Articulation Models

Learning Models: Graph

/track [TrackMsg]

simple_publisher.py

model_learner_srv

+ ArticulatedModel plugin

/model [ModelMsg]

rviz

Fits all models
and selects the

best one

Learning Models: Video

� Using the articulation_rviz_plugin

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
Getting started with Articulation Models

Learning Models: Launch File
<launch>

<node pkg="articulation_models" type="simple_publis her.py" name="simple_publisher" output="screen“ args ="
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/001.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/001.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/002.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/002.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/003.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/003.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/004.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/004.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/005.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/005.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/006.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/006.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/007.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/007.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/008.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/008.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/009.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/009.log
$(find articulation_tutorials)/demo_fitting/data/dr awer_one/010.log
$(find articulation_tutorials)/demo_fitting/data/ca binet_one/010.log
" >

</node>

<node pkg="articulation_models" type="model_learner _msg" name="model_learner" output="screen">
<param name="filter_models" value="rotational prisma tic"/>
<param name="sigma_position" value="0.01"/>
<param name="sigma_orientation" value="10.00"/>

</node>

<node pkg="rviz" type="rviz" output="screen" name=" rviz" args="-d $(find
articulation_tutorials)/demo_fitting/fit_models.vcg " />

</launch>

Simple
publisher

Model Learner

RVIZ

Many Interfaces

� Command-line

� Via simple_publisher.py, process_bag.py, and
others

� Publishes trajectory from text or bag files, or
directly from end-effector pose of PR2

� Python

� Via subscriber/publisher

� Via service calls

� C++

� Direct library bindings

� Fastest

Learning Models using a Webcam

http://www.ros.org/wiki/articulation_tutorials/Tuto rials/
ArticulationWebcamDemo

uvc_cam

checkerboard_detector

rviz

pose_visualizer.py articulation_collector.py

structure_learner

Learning Models using a Webcam

� Milka Chocolate Box

� Live demo after the talk!

Learning Models using a Webcam

� Leibniz Cookies

� Live demo after the talk!

Learning Models using a Webcam
articulation_tutorials/ webcam_demo/ webcam_demo-1c m-4x6-4x5.launch:

<launch>

<node name="uvc_cam" pkg="uvc_cam2" type="sender" o utput="log">
<param name="D" type="string" value="-0.0834232 0.12 0545 -0.0023918 0.0175383 0 "/>
<param name="K" type="string" value="578.252 0 350.2 04 0 575.115 207.606 0 0 1 "/>
<param name="R" type="string" value="1 0 0 0 1 0 0 0 1 "/>
<param name="P" type="string" value="578.252 0 350.2 04 0 0 575.115 207.606 0 0 0 1 0 "/>
<param name="device" type="string" value="/dev/video 0"/>
<param name="width" type="int" value="640"/>
<param name="height" type="int" value="480"/>
<param name="fps" type="int" value="2"/>

</node>

<node name="image_proc" pkg="image_proc" type="imag e_proc" output="log"/>

<node name="pose_visualizer" pkg="checkerboard_dete ctor2" type="pose_visualizer.py" output="screen"/>

<node pkg="checkerboard_detector2" type="checkerboa rd_detector2"

respawn="false“ output="log" name="checkerboard_dete ctor">
<param name="display" type="int" value="0"/>

<param name="rect0_size_x" type="double" value="0.01 "/>
<param name="rect0_size_y" type="double" value="0.01 "/>
<param name="grid0_size_x" type="int" value="4"/>
<param name="grid0_size_y" type="int" value="6"/>

<param name="rect1_size_x" type="double" value="0.01 "/>
<param name="rect1_size_y" type="double" value="0.01 "/>
<param name="grid1_size_x" type="int" value="4"/>
<param name="grid1_size_y" type="int" value="5"/>

</node>

</group>

Checkerboard
Detector

Webcam

Learning Models using a Webcam
[...]

<node name="articulation_collector" pkg="articulati on_structure" type="articulation_collector.py"
output="screen">

<param name="samples" value="50"/>

</node>

<node name="structure_learner" pkg="articulation_st ructure" type="structure_learner_srv" output="scree n">

<param name="sigma_position" value="0.01"/>

<param name="sigma_orientation" value="0.1"/>

<param name="filter_models" value="rigid prismatic r otational"/>

</node>

<node pkg="rviz" type="rviz" output="screen" name=" rviz" args="-d $(find
articulation_tutorials)/webcam_demo/webcam_demo.vcg " />

</launch>

Pose Collector

Structure Learner

RVIZ

Conclusions

� Bayesian framework for learning kinematic
model of articulated objects

� Robust model fitting

� Model comparison

� Structure selection

� Estimation of effective number of DOFs

� Stable code, open-source, BSD

� Fully integrated in ROS

� Command-line

� Python

� C++

Future Work

� Add more model classes

� Integrate with handle detector

� Store learned articulation models in maps

� Learn force profiles

References

� J. Sturm, V. Pradeep, C. Stachniss, C. Plagemann, K.
Konolige, & W. Burgard. (2009). Learning kinematic models
for articulated objects. In Proc. of the Int. Joint Conf. on
Artificial Intelligence (IJCAI).

� J. Sturm, K. Konolige, C. Stachniss, & W. Burgard. (2010).
Vision-based detection for learning articulation models of
cabinet doors and drawers in household environments. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA).

� J. Sturm, A. Jain, C. Stachniss, C. Kemp, & W. Burgard.
(2010). Operating articulated objects based on experience. In
Proc. of the IEEE Int. Conf. on Intelligent Robot Systems
(IROS).

Thank you!

� Any Questions?

� Live demo..

