Navigation Tutorial

illo
rage

Eitan Marder-Eppstein
May 25, 2010

b
Outline

 Brief overview of navigation
* Run navigation with SLAM to build a map

* Send goals to the navigation stack through
code

* Learn how to save a map and use it for
navigation later

=
QD
-
@
>
O

A Typical Office Environment

b
The PR2 Robot

« Holonomic base.

* Planar Hokuyo laser on
base

* Actuated Hokuyo laser just
below head - takes 2
seconds to produce a full
3D scan of the
environment

b
Obstacle Avoidance

* Use a 3D Voxel Grid to store information
about known free, known occupied, and
unknown space

b
Voxel Grid

b
Voxel Grid Implementation

» 3D raytracing at 2D speed
* Allows for tracking of Marking in Golumn

unknown space
2D Grid of —
32-bit Integers

] _ , Clearing in Column
0 Every 2-bits of each & -]
integer represents a cell |

at a different height

iﬂ

b
Sensor Processing Pipeline

Raw Sensor Data Processed Sensor Data

[_\’;l‘.'u

b
Global Planner

» Fast, grid based planner that uses an A*
heuristic.

» Optimistic, uses the inscribed circle of the
robot for planning.

L ocal Planner

* Forward simulates
a number of
possible velocity
commands using
the Dynamic
Window Approach.

» Checks for
collisions using the
footprint of the
robot.

*
= o
*
. - L
- .
. L P
. n om *
*
) L] [] \d
.
|] L]
L4
LI |
'
L]
* . L *
° . o, -
L 4
¢ s WE 5
* <
s mE,
* L 4
‘-I'..
i,

Frames Matter

resulting obstacle

Q.
&
S SEEEEEE
— N
m]
= | “
a -
N
©
O
m H
HEEEEEE
_n
Il .
-
[]
HEEEENE
Q.
®
S

=
o
g,
o

sensor transforms

odometry source

Wi

"move_base_simple/goal”
geometry_msgs/PoseStamped
L

tf/tfMessage

"odom"

Navigation Stack Setup

"fmap"

move_base l
Y

-«—— global_costmap

global_planner

| e

nav_msgs/GetMap map_server

sensor topics

internal . .
nav_msgs/Path recovery_behaviors

N

local_planner -<«—— local_costmap

nav_msgs/Odometry

"cmd_vel" |geometry_msgs/Twist

base controller

sensor_msgs/LaserScan | ScnoOf SOUTCes

sensor_msgs/PointCloud

provided node
optional provided node
platform specific node

http://www.ros.org/wiki/navigation

b
PR2 Navigation Flavors

* pr2_2dnav_local: Navigation in the odometric
frame. Does not use any localization or a user-
provided map.

* pr2_2dnav_slam: Navigation with SLAM,
builds a map as you go.

* pr2_2dnav: Navigation with a user-provided
map. Requires that the user Initialize localization
In that map using rviz.

b
Task 1: Make a Map

* Get things up and running on the robot:
- http://www.ros.org/wiki/pr2_2dnav_slam

- The joystick will be active, so you can drive the
robot around

- You can also send goals to the navigation
stack using the “2D Nav Goal” button in rviz

* |f you have extra time

- Play around with rviz, give the robot a goal and
jump in front of it, put an object in the robot's
path and see if it can avoid it, etc.

b
Task 2: Goals With Code

« Complete the following tutorial

- http://www.ros.org/wiki/navigation/Tutoria
Is/SendingSimpleGoals

* If you have extra time

- Try to send a goal to the navigation stack in the
“map” frame instead of the "base link” frame

- Try to send a goal to the navigation stack in
python instead of C++
(http://www.ros.org/wiki/actionlib)

b
Task 3: Save and Use a Map

* Follow instructions on using the “map_saver” tool
- http://www.ros.org/wiki/map_server

* Bring down pr2_2dnav_slam

* Follow instructions on using the “map_server” tool
- http://www.ros.org/wiki/map_server

* Run pr2_2dnav
- http://lwww.ros.org/wiki/pr2_2dnav
- Send a goal using rviz or your code

 If you have extra time

- Ask any questions you might have. Try to come up with
something on your own. Take a break.

http://www.ros.org/wiki/map_server
http://www.ros.org/wiki/pr2_2dnav

s

#wait for the action server to be available

move base client =
actionlib.SimpleActionClient ('move base local',
MoveBaseAction)

move base client.wailt for server()

#construct a simple goal in the base link frame

goal = MoveBaseGoal ()

goal.target pose.header.frame id = 'base link'
goal.target pose.pose.position.x = 1.0
goal.target pose.pose.orientation.w = 1.0

#send the goal and wait for the base to get there

move base client.send goal and walt (goal)

b
#Get the pose of the 3x4 checkerboard

get checkerboard pose =

rospy.ServiceProxy('wide get checkerboard pose',
GetCheckerboardPose)

board pose = get checkerboard pose(3, 4, .108,
108) .board pose

b
#given the pose of the checkerboard, get a good pose to
approach it from

get approach pose =
rospy.ServiceProxy('get approach pose', GetApproachPose)

nav_pose = get approach pose (board pose) .nav pose

s

#OK... our nav _pose 1s now ready to be sent to the
navigation stack as a goal

move_base_client =

actionlib.SimpleActionClient ('move base local',
MoveBaseAction)

move base client.walt for server()
goal = MoveBaseGoal ()

goal.target pose = nav pose

#send the goal and wait for the base to get there

move base client.send goal and wailt (goal)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

