The Office Marathon:

Robust Navigation in an Indoor Office Environment

Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, Kurt Konolige

Willow Garage Inc., USA
{eitan,berger, tfoote, gerkey, konolige}@willowgarage.com

Abstract— This paper describes a navigation system that al-
lowed a robot to complete 26.2 miles of autonomous navigation
in a real office environment. We present the methods required
to achieve this level of robustness, including an efficient Voxel-
based 3D mapping algorithm that explicitly models unknown
space. We also provide an open-source implementation of the
algorithms used, as well as simulated environments in which
our results can be verified.

I. INTRODUCTION

We study the problem of robust navigation for indoor
mobile robots. Within this well-studied domain, our area
of interest is robots that inhabit unmodified office-like en-
vironments that are designed for and shared with people.
We want our robots to avoid all obstacles that they might
encounter, yet still drive through the tightest spaces that they
can physically fit. We believe that reliable navigation of this
kind is a necessary prerequisite for any useful task that an
indoor robot might perform.

While many robots have been shown to navigate in office-
like environments, existing approaches invariably require
some modification of the environment, or do not allow the
robot to negotiate tight spaces. Most indoor robots rely on a
planar or quasi-planar obstacle sensor, such as a laser range-
finder or sonar array. Because vertical structure dominates
man-made environments, these sensors are positioned on the
robot to detect obstacles along a horizontal slice of the world.
The result is a robot that can easily avoid walls but will
miss chair legs, door handles, table tops, feet, etc. Collisions
are avoided by either modifying the environment (e.g., re-
moving chairs, covering tables with floor-length tablecloths),
or adding artificial padding (e.g., inflate obstacles by the
maximum expected length of a person’s foot), which prevents
the robot from traversing tight spaces.

Three-dimensional obstacle sensing is increasingly com-
mon, usually in the form of an actuated laser range-finder
(e.g., a horizontally-mounted laser that tilts up and down) or
a stereo camera pair. Some sensors combine laser and camera
technology, in a pulsed or line-stripe fashion. The availability
of such devices provides an opportunity for an indoor robot
to sense and avoid nearly all hazards that it might encounter.

The challenge lies in interpreting, storing, and using the
data provided by the three-dimensional sensors. In this paper,
we present a robot navigation system that exploits three-
dimensional obstacle data to avoid the smallest obstacles
that can be perceived with the available sensors, yet drives

Fig. 1. The PR2 avoiding a table after passing through a narrow doorway.

through the tightest spaces that the robot can fit. At the
core of our work is an efficient technique for constructing,
updating, and accessing a high-precision three-dimensional
Voxel Grid. This structure encodes the robot’s knowledge
about its environment, classifying space as free, occupied,
or unknown. Using this grid, the robot is able to plan and
execute safe motions in close proximity to obstacles.

Through extensive experimentation, we have established
that our approach is safe and robust. During endurance runs
with the PR2, we regularly left a robot running unattended
overnight in our office building, which was not modified to
accommodate the robot. The software described in this paper
is available under an open-source license,' and we encourage
others to experiment with and use our code.

II. RELATED WORK

A wide variety of robots have been demonstrated to
navigate successfully in human environments. A common
theme is robotic museum tour guides. RHINO [1] was the
first robotic tour guide and was followed soon after by
MINERVA [2], which led tours through the Smithsonian
Museum in 1998. Other robots have followed, including
Mobots [3], Robox [4], and Jinny [5]. These robots have
dealt with environments that are often crowded with people

!nstructions for running the experiments presented in this paper, as well
as all the source code for the PR2 navigation system can be found here:
http://www.ros.org/wiki/Papers/ICRA2010_Marder-Eppstein

with varying degrees of success. Most cite their primary
difficulty as robust localization, and have focused on creating
localization systems that are reliable in these highly dynamic
environments. In attempting to apply the navigation tech-
niques used by these platforms to the PR2, however, another
pressing issue emerged that was not addressed: the ability
to reason about three-dimensional space, both occupied and
unknown, in a principled manner.

Previous techniques for handling three-dimensional obsta-
cles range from restricting the path of the robot to corridors
known to be clear in the nominal case [3], to building a
three-dimensional octree of the environment and computing
bounding boxes around obstacles [6]. The first approach fails
whenever a difficult obstacle enters a navigation corridor,
and the second approach requires the robot to stop for a
prolonged period of time, take a full scan of the environment,
create a plan, and then fall back on two-dimensional sensing
if a dynamic or occluded obstacle is encountered while
executing the plan. In cluttered environments such as offices,
both approaches would be highly susceptible to collisions,
and have poor performance.

In the outdoor navigation domain, there has also been work
on three-dimensional perception. Stanford’s autonomous car
Junior [7] utilized a three-dimensional free space analysis
from its Velodyne laser range finder. This free space analysis
was performed radially in the ground plane and allowed
dynamic obstacles recorded in the map to be cleared quickly
as they moved to a new location. This approach is lim-
ited, however, by the fact that only the two-dimensional
projections of obstacles were stored. For a sensor like the
Velodyne, this works because the laser returns 360-degree
scans of the world at a high rate. However, for a three-
dimensional sensor with any latency, storing only the two-
dimensional projections of obstacles is insufficient. Also,
storing obstacle information in two dimensions limits the
types of occlusions that can be tracked in an environment.
For office environments that contain obstacles that occlude
others, this proves problematic.

III. PROBLEM DESCRIPTION

Given any physically reachable goal in an office-like
environment,” we require a mobile robot to autonomously
navigate to that goal, avoiding collision with obstacles on the
way. The robot is assumed to be wheeled, and cannot step
over obstacles, but only drive around them. The environments
that we study are unmodified, and are filled with a variety
of obstacles, including tables, chairs, people, and scooters
(Figure 1), all of which can change location throughout
the day. The key challenge in this problem is detecting
and avoiding obstacles with non-trivial three-dimensional
structure, while not giving up the ability to fit through narrow
passageways.

2We scope our effort to institutional environments that conform to modern
U.S. building codes, chief among them the Americans with Disabilities Act
(ADA), which establishes a variety of constraints, including minimum width
on doorways.

Fig. 2. A narrow doorway with tables.

As a concrete example, consider the case where a robot is
tasked to move through the narrow gap between two tables
of different heights. The robot must detect the edges of the
tables using a sensor capable of generating three-dimensional
information, create a plan through the two tables that avoids
the edges, and then execute that plan. Next, consider that
a person walks in front of the robot while it executes its
plan, blocking the robot in, and then moves out of the way.
The robot now needs a way to tell the difference between the
person that it no longer sees because they have walked away,
and the tables it no longer sees because the three-dimensional
sensor on the robot takes a long time to make a full sweep
of the environment. In our experience, using fixed timeouts
for the persistence of observed obstacles resulted in either
unreasonably slow and conservative behavior near dynamic
obstacles, or dangerous behavior near small obstacles. For
example, if the robot is too aggressive in clearing out
obstacles, it may mistakenly remove the tables from its map,
potentially causing a collision. This is just one of many
troublesome situations that a robot will eventually encounter
in environments that are not modified for its benefit.

We consider proof of robustness in these difficult scenarios
contingent upon completion of long-running autonomous
navigation in an office environment, without human inter-
vention. We believe the key to successful navigation in
such environments is the robot’s ability to reason about its
environment in three dimensions, to handle unknown space
in an effective manner, and to detect and navigate in cluttered
environments with obstacles of varying shapes and sizes. To
prove competence in these areas, we require the robot pass
a number of tests both in simulation, and a real-world office
environment. Summaries of these tests are presented in the
sections below.

A. Narrow Doorways and Tables

The first navigation test challenges a robot to move
through narrow spaces while also avoiding three-dimensional
obstacles. The robot first passes through a narrow doorway,
after which it must navigate between two tables placed

Fig. 3. The robot rounding a blind corner.

Fig. 4. A cluttered simulation environment.

directly on the other side, as shown in Figure 2. This
environment is impossible to navigate successfully using the
traditional approach of two-dimensional sensing with large
padding values on obstacles. For the robot to pass through the
doorway, the padding must be small enough that the robot
would also pass between the legs of the tables, causing a
collision. If, however, the padding is set large enough to
avoid the tables, the robot will be unable to pass between
the narrow doorway or the narrow space between the tables.
In this way, the test guarantees a robot reasons about its
environment in three dimensions.

B. Rounding a Blind Corner

The second test forces a robot to round a blind corner that
occludes a table, as shown in Figure 3. To complete this task
successfully, the robot must reason about unknown space in
a principled manner. Robots that treat the occluded space as
free will risk hitting the table.

C. Obstacle Slalom Course

The third test, shown in Figure 4, challenges a robot with
obstacles of varying size, shape, and height. This environ-
ment stresses the robot’s ability to detect different kinds of

three-dimensional obstacles in cluttered, tight spaces, as well
as its ability to move through a difficult obstacle field.

IV. PLATFORM

Experiments in this paper were performed with an Alpha
prototype of the PR2 mobile manipulation platform (Fig-
ure 1). The PR2’s 8-wheeled omni-directional base allows
it to drive in wheelchair-accessible environments. The top
speed of the PR2 base is approximately 1 m/s. We do not
use the PR2’s arms in this study.

A Hokuyo UTM-30LX laser scanner is mounted on the
mobile base, providing a 270-degree horizontal view of the
world at ankle-height. A second Hokuyo laser scanner is
mounted on a tilting platform at shoulder-height, providing
a 3D view of the area in front of the robot. The PR2’s
head is a pan-tilt platform equipped with a high resolution
5 megapixel (Mp) camera and two stereo camera pairs, with
different fields of view and focal lengths.

In the present work, we use the base laser and the tilting
laser to detect obstacles and navigate, but our approach is
compatible with any range sensor that produces a point
cloud.

A system as complex as the PR2 is driven by a number of
subsystems that must be able to easily communicate with one
another: hardware drivers, controllers, perception, planning,
higher level control, etc. The computational needs of these
components virtually necessitate the use of a distributed
computing environment. To accommodate these needs, we
use ROS,? which provides access to hardware and hides the
complexities of transferring data between components.[8]

V. APPROACH

Office environments offer many interesting challenges for
a mobile robot. There are chairs, tables, and small obstacles
to avoid, people that get in the way, and obstacles that
occlude others. In this section, we discuss the key aspects
of our approach that handle many of these challenging
problems.

A. Sensor Processing Pipeline

Sensor data is often imperfect. Obstacles may be reported
where none exist, or be missed when they should be detected.
Because of this, the sensor processing pipeline proved to be
an extremely important part of the PR2 navigation system.
The pipeline’s job is to take in raw sensor data and apply
a number of filters to the data before it is converted into
obstacle information used for planning.

Our approach infers obstacles strictly from geometric
information, relying on range sensors that can produce point
clouds. On the PR2, we use two Hokuyo lasers, one mounted
on the base of the robot and one mounted on an actuated
platform just under the robot’s head. These lasers have
an observed depth accuracy of only 1.5cm, and are also
susceptible to veiling effects off edges hit at high incidence
angles or reflective surfaces where the laser reports false

3ROS (Robot Operating System - http://www.ros.org) iS an open-source
project to build a meta-operating system for mobile manipulation systems.

hits in free space. This lack of accuracy in readings makes
it difficult to differentiate between small objects and the
ground, and the veiling effects result in false positives when
entering narrow passages such as doorways or when the scan
passes near the robot’s own body.

To detect small obstacles on the ground, each ground
laser scan is passed through a Random Sample Consensus
(RANSAC) [9] algorithm that fits a line model to the scan
and reports the outliers as obstacles. We can identify and
avoid ground obstacles as short as 6cm. To remove the false
positives generated by veiling effects, a filter is applied that
looks at the angle between consecutive points on a scan and
the viewpoint, and throws the reading out as invalid if it is
outside of a tolerance. This filter allows traversal of narrow
passageways that would have otherwise been blocked off by
false hits.

In addition to filtering out sensor readings that are invalid
due to laser hardware limitations, it is important to filter out
readings that intersect the body of the robot. For example, if
the actuated tilting laser sees the base or arm of the robot,
the navigation system should not consider those readings as
obstacles. Therefore, an additional filter, which checks each
laser reading for intersection with the robot body, is applied
to all sensor data to remove any intersecting readings from
the obstacle information used by the navigation system for
planning.

B. Voxel Grid

The Voxel Grid, as shown in Figure 5, is an efficient three-
dimensional occupancy grid that serves as the core of our
approach to navigation.

Each cell in the grid has one of three states: occupied, free,
or unknown; we do not use a probabilistic scheme because
of performance considerations. Occupancy information is
used to create safe plans for the navigation system even in
cluttered environments. There are two main operations that
can be performed on the grid: marking and clearing. Marking
refers to accessing an element of the grid and changing its
status based on an observation from a sensor, and clearing
refers to raytracing in the grid from the origin of a sensor
to an observation while asserting free space along the way.
To run at a reasonable rate, it is important that both marking
and clearing operations be extremely efficient. Using a 3GHz
Core 2 Duo Processor, our Voxel Grid performs marking
and clearing operations on 1,647,058 rays a second out to
a distance of 3.0m in a grid with 2.5cm resolution per
cell. This means that the Voxel Grid can raytrace through
197,647,059 cells in one second, easily keeping up with the
lasers mounted on the robot which require only 17 percent
of that computation.

Each grid cell needs only two bits of memory to store
its state. The Voxel Grid encodes state efficiently using a
two-dimensional array of 32-bit integers, where each integer
represents a vertical column of the 3D grid, and each two bits
of the integer encodes the state of a cell. Initially, all the cells
in the Voxel Grid are marked as unknown because we have
no sensor readings about them. Marking a cell as occupied

Fig. 5. The robot’s Voxel Grid as it navigates between two tables.

involves a two-dimensional index into the array, and then a
single bitwise-or operation with a mask corresponding to the
height of the cell. Clearing in the grid uses a modified version
of Bresenham’s two-dimensional raytracing algorithm [10].
Steps in the X and Y dimensions correspond to changes in
the index, but steps in the Z dimension correspond to bit-shift
operations applied to an integer mask. Then, for each cell
visited in a given raytracing iteration, a bitwise-and operation
is applied to clear the cell.

This implementation of the Voxel Grid is remarkably
efficient, but it does limit the number of grid cells in the Z
dimension to 16 to run at the rate reported in this paper. In the
case of the PR2, obstacles up to 1.3 meters tall are placed in
the grid, which results in a maximum Z-resolution of 8.1cm
per cell. On a 64-bit machine, however, this could be further
reduced to 4.1cm. The 8.1cm resolution proved sufficient for
the PR2 in its office environment, but for a robot that has
tight vertical clearances, a finer-grained resolution might be
required.

For the horizontal dimensions of the Voxel Grid we use
a resolution of 2.5cm for each cell. Such a high resolution
is necessary because the PR2 has only 5cm of clearance on
each side when traversing a typical ADA-compliant doorway.
A coarser grid can cause doorways to appear impassable
based on discretization errors that occur upon projection
of points into the grid, especially when doorways are not
aligned with the grid. The use of such a high horizontal
resolution increases the importance of efficiency in the Voxel
Grid.

C. Unknown Space

One of the main advantages of the Voxel Grid structure
presented above is its ability to track unknown space in
the world. There have been many different approaches to
handling occlusions in navigation. Some robots limit their
speed based on the speed of dynamic obstacles in the
environment and two-dimensional sight-lines computed be-
tween the robot and occluding obstacles [11]. However, this
analytical approach does not scale well to three-dimensional

obstacles. Others limit speeds when making sharp turns, or
ignore the danger of rounding a blind corner completely.

In our approach, speed limits arise naturally from treating
unknown space as illegal to traverse. Consider the case
where the robot must round a corner and a wall occludes
the laser from receiving useful obstacle information from
around the bend. In this case, the space occluded by the
wall will appear as unknown in the robot’s three-dimensional
occupancy grid. The robot has two qualitative options as
it approaches the corner: it can slow down until it is able
to see around the bend, or it can take the corner wide at
a higher speed, increasing visibility into that space. Both
options are reasonable and result in safe navigation behavior
for the robot, without setting arbitrary thresholds.

In an ideal world, every unknown grid cell would be
treated as an obstacle as described above. This would al-
low hard guarantees to be made about the safety of an
autonomous robot because it would never traverse cells that
it had not explicitly seen. In the case of the PR2, however,
the tilting laser cannot carve out space quickly enough to
allow the robot to move at a reasonable speed with this
strategy. Instead, we use a non-zero tolerance for the number
of unknown cells allowed in a Voxel Grid column that is
considered to be free. Using a low tolerance results in a
robot that is safer but moves more slowly, while using a
higher tolerance results in a robot that can move more freely
but with added risk. In the experiments presented here, the
PR2 runs with a tolerance of 4 unknown cells per each
16-cell column; this allows the base to move at reasonable
speeds while still causing the robot to slow down for major
occlusions.

VI. IMPLEMENTATION

The PR2 navigation system is simple at a high level. It
takes in data from sensors, odometry, and a navigation goal,
and outputs velocity commands that are sent to a mobile
base. The low-level architecture of this system, however, is
complex and consists of many components that must work
together. The major components of the navigation system
and the relationships between them are presented below.

A. Mapping and Localization

The PR2 navigation system can be initialized with or with-
out an a priori, static map. When initialized without a map,
the robot only knows about obstacles that it has seen, and
will make optimistic global plans through areas that it has not
yet visited which may traverse unknown space, potentially
intersecting unseen obstacles. As the robot receives more
information about the world, it replans accordingly to avoid
obstacles. Initialized with a static map, the robot will make
informed plans about distant parts of the environment, using
the map as prior obstacle information. To navigate efficiently
over long distances in an office environment, and to allow
humans to task the robot to move to a particular location in
the world, having a map can be a significant benefit.

In either case, we require that the robot’s pose be tracked
in a consistent global coordinate frame. When not using a

Circumscribed Radius

Inscribed Radius

Robot Footprint

Fig. 6. An illustration of the inscribed and circumscribed radii as they
relate to the robot’s footprint.

map, the robot’s pose is usually estimated by integrating
wheel odometry, possibly fused with data from an inertial
measurement unit (IMU). When using a map, the robot is
usually localized using a probabilistic technique. We employ
both approaches in our experiments, using an extended
Kalman filter to fuse wheel odometry and IMU data in the
no-map case, and adaptive Monte Carlo localization [12] in
the map case.

B. Costmap

Because the robots we study are constrained to drive
on flat ground, and cannot, for example, step or jump
over obstructions, we assemble obstacle data into a planar
Costmap on which the planners operate. The Costmap is
initialized with the static map (if available), but updates
as new sensor data comes in to maintain an up-to-date
view of the robot’s local and global environment. Although
the Costmap is used as a two-dimensional structure by the
navigation system, its underlying representation of the world
actually consists of the efficient three-dimensional Voxel
Grid described above. Each column in the Voxel Grid is
projected down into two dimensions where it is assigned a
cost. Columns with occupied cells are assigned a lethal cost,
meaning that no part of the robot’s footprint is allowed to
be inside of the corresponding two-dimensional cell. Then,
inflation is performed in two dimensions to propagate costs
from obstacles out to a user-specified inflation radius. Cells
that are less than one inscribed radius of the robot away from
an obstacle (see Figure 6) are assigned a uniformly high cost,
after which an exponential decay function is applied that will
cause the cost to drop off out to the inflation radius used for
the Costmap.

C. Global Planner

The global planner is given the obstacle and cost in-
formation contained in the Costmap, information from the
robot’s localization system, and a goal in the world. From
these, it creates a high-level plan for the robot to follow to
reach the goal location. It is important that this planning
process be efficient, so that the navigation system can run at
a reasonable rate. Therefore, the global planner used for this
navigation system assumes that the robot is circular, uses an
A* algorithm that plans directly in the configuration space
computed during obstacle inflation in the Costmap, and does

not take into account the dynamics or the kinematics of the
robot [13]. While this ensures that the global planner returns
quickly, it also means that the planner is optimistic in the
plans that it creates. For example, the global planner may
produce a path for the robot that is infeasible, such as a plan
that turns through a narrow doorway too tightly, causing the
corners of the robot to hit the door frame. Because of its
shortcomings, the global planner is used only as a high-level
guide for navigation in an environment.

D. Local Planner

The local planner is responsible for generating velocity
commands for the mobile base that will safely move the
robot towards a goal. The local planner is seeded with
the plan produced by the global planner, and attempts to
follow it as closely as possible while taking into account the
kinematics and dynamics of the robot as well as the obstacle
information stored in the Costmap. In order to generate
safe velocity commands, the local planner makes use of a
technique known as the Dynamic Window Approach (DWA)
to forward simulate and select among potential commands
based on a cost function [14]. The cost function combines
distance to obstacles, distance to the path produced by the
global planner, and the speed at which the robot travels.
The behavior of the robot can be changed drastically by
setting the weights on each component of the cost function
differently. For example, a robot that is programmed to
stay as far away from obstacles as possible might have the
weighting factor for distance to obstacles set quite high. This
would result in the robot slowing down significantly around
obstacles, and perhaps taking a longer route to avoid coming
within a certain distance of obstacles. Because the robot must
pass through narrow spaces such as doorways, the PR2’s
cost function is tuned aggressively, guaranteeing only 3cm
of clearance between the base and obstacles.

E. Local and Global Coordinate Frames

As discussed by Moore [15], it is important to distinguish
between global and local coordinate frames when implement-
ing a navigation system. A global coordinate frame, like the
one provided by the localization component described above,
is advantageous in that it provides a globally consistent
frame of reference, but is flawed in that it is subject to
discontinuous jumps in its estimation of the robot’s position.
For example, when the localization system is struggling to
determine the robot’s position, it is not uncommon for the
robot to teleport, on a single update step, from one location
to another that is one meter away. A local coordinate frame,
such as the one provided by odometry, has no such jumps,
but presents its own flaws in that it is prone to drifting over
time, which localization corrects.

Often, all planning and obstacle avoidance is performed
in the global frame, but this leads to problems when discrete
jumps in localization occur. To illustrate this, consider the
case in which a robot is tasked to navigate through a narrow
doorway with limited clearance on either side. If the robot
attempts to plan through the doorway in a global frame,

a localization jump drastically affects the robot’s obstacle
information. A jump in the robot’s position of just a few
centimeters to either side, combined with new sensor data,
may actually be enough for the robot to see the narrow
doorway as impassible. If the robot instead operates in a
local frame, nearby obstacles are not affected by jumps in
localization, and the robot can traverse through the doorway
independent of any difficulties with the localization system.

Thus, we use the global coordinate frame to create high-
level plans for the robot, but use a local coordinate frame
for local planning and obstacle avoidance. To relate the
two frames, the plan produced by the global planner is
transformed from the global coordinate frame into the local
coordinate frame on every cycle. This seeds the local planner
with a path that is not affected by odometry drift, allowing
the robot to traverse narrow passageways and crowded en-
vironments undeterred by jumps caused by uncertainty in
localization.

F. Tilting Laser

The tilting laser used as the three-dimensional sensor
for the PR2 navigation system can be actuated at different
speeds. A slow tilt profile will give dense obstacle informa-
tion, but the time between updates for a specific region of
the world will be large, limiting the safe speed of the robot.
Alternatively, a quick tilt profile will update the full world-
model rapidly, but that model will have poor density. By
virtue of the modelling of unknown space in the algorithm,
neither of these options will create a safety hazard, but both
will cause the robot to move slowly.

When the laser is tilted, the worst-case spacing between
rays occurs at maximum range. We want a maximum of 3cm
of vertical travel between points. The Hokuyo UTM-30LX
takes 25 ms to scan a line; at a 2-meter obstacle detection
range, this gives a maximum tilting rate of 0.6 rad/sec and,
for a 1.9 radian tilt range, gives us a minimum scan time of
3.2 seconds. Although the robot is moving while it scans,
we can clear out roughly 2 meters in front of us every 3
seconds, which allows a maximum speed of 0.6m/s. In actual
operation, we chose to use a more conservative maximum
velocity of 0.45 m/s.

G. Policy

The navigation system as described works well most of
the time, but there are still situations where the robot can get
stuck. To make the system as robust as possible, a number
of recovery behaviors were built into the navigation system.
One common cause of failure for the navigation system is
entrapment, where the robot is surrounded by obstacles and
cannot find a valid plan to its goal. When the robot finds
itself in this situation, a number of increasingly aggressive
recovery behaviors are executed to attempt to clear out space.
First, the robot clears all obstacles in its map that are further
than 3m away by reverting to the initial map for all obstacles
outside of a 6mx6m local window. If this fails, the robot
performs an in-place rotation to attempt to clear out space.
If this too fails, a more aggressive map reset is attempted

Simulation Results
Environment Trials | Avg. Speed | Distance | Collisions
Doorway and Tables | 10 0.39m/s 7m None
Blind Corner 10 0.35m/s 12m None
Obstacle Slalom 10 0.41m/s 13m None
Real World Results
Environment Trials | Avg. Speed | Distance | Collisions
Doorway and Tables | 5 0.40m/s 6m None
Blind Corner 5 0.37m/s 7m None
Obstacle Slalom 5 0.38m/s 12m 1 Grazing
TABLE I

RESULTS FOR THE EXPERIMENT ENVIRONMENTS BOTH IN SIMULATION

AND THE REAL WORLD.

Fig. 7. The robot avoiding a tape dispenser and a scooter in an obstacle
slalom course.

where the robot clears all obstacles that are outside of its
circumscribed radius. After this, another in-place rotation is
performed to clear space, and if this last step fails, the robot
will abort on its goal which it now considers infeasible.

VII. EXPERIMENTAL RESULTS

The PR2 navigation system described above was cre-
ated with the ultimate goal of completing long-running au-
tonomous navigation tasks in an office environment, without
human intervention. To achieve this goal, we required that
the navigation system operate without incident in our office
environment over a 26.2 mile run. As described in Section
III, the robot also had to complete a number of pre-defined
tasks to prove additional robustness. Experiments on these
tasks were run both in the Gazebo Robot Simulator [16]
and our local office environment. In each experiment, the
robot ran with its maximum velocity set at 0.45m/s and its
threshold for unknown space set at 25 percent. This means
that the robot was required to see 75 percent of the cells in
each column in the Voxel Grid before considering the column
traversable. The local planner was configured to forward-
simulate 60 different trajectories for 1.7 seconds each.

A. Task Results

The robot completed the navigation tasks described above
both in simulation and the real world, avoiding obstacles

as small as 6cm in height and driving through passageways
with as little as Scm of clearance on each side. (Figure 7)
The robot hit no obstacles in simulation, but did scrape the
rubber piece on the bottom of a tripod in one of five runs of
the real world obstacles slalom course. This is not entirely
unexpected, however, as the piece on the tripod lay below
the 6 cm threshold for the minimum obstacle the robot’s
sensors can detect. A more intelligent perception pipeline
might reason that the slanted legs of the tripod must extend
to the floor, and avoid the obstacle in that manner, but the
PR2 navigation system lacks this kind of object classification.
The results from each of the experiments, in both the real
world and simulation, are shown in Table 1.

B. Marathon Results

The PR2 navigation system successfully completed 26.2
miles of autonomous navigation in an office environment,
without human intervention. For the marathon, the navigation
system was given a 2.5cm resolution map of the office gen-
erated by running a Simultaneous Localization and Mapping
system off-line on planar laser data of the building. This
means the map included information about the building’s
structure, but not about three-dimensional obstacles. During
the marathon, the robot often encountered people, passed
through narrow spaces such as offices, and avoided three-
dimensional obstacles such as shelves, tables, and chairs.
Due to the underlying Voxel Grid representation, the robot
was able to keep a truly three-dimensional view of the world,
allowing it to be principled about clearing out obstacles from
its map. The robot took approximately 30 hours to complete
the marathon, and ran at an average speed of 0.4 meters per
second. When the robot ran low on battery power, it returned
to a designated charging station and emailed a plug-in
request. Then, when charging finished, the robot would email
again, requesting to be unplugged. During the marathon, the
robot was often harassed by people, surrounded by large
groups, and purposely cornered into narrow and difficult
positions. Through all of this, the robot proved to be robust
and safe.

VIII. LIMITATIONS

While the navigation system works well in many cases,
there are some limitations that are important to address.
One such limitation involves the RANSAC approach used
to detect small ground obstacles. The approach processes
single laser ground scans extremely quickly, but can generate
false negatives for some obstacles. For example, RANSAC
cannot tell the difference between a laser reading on a wall
that is 1cm above the ground, and the actual ground plane.
Typically, this does not affect the performance of the PR2
since walls tend to be vertical, causing the robot to avoid
them based on sensor readings received higher up. However,
the PR2 is susceptible to hitting long, low obstacles.

Another shortcoming of the navigation system stems from
inconsistencies between the global and local planners. The
global planner uses a circular approximation of the robot
for planning, while the local planner uses the actual robot

footprint. This means there are cases where the global
planner creates plans, such as through a half-closed door,
that the local planner cannot execute. Here, the robot will
struggle to pass through the doorway until its current goal
times out and it receives a new goal in a different location.

The tilting laser also limits navigation. Slow 3D scan times
result in the robot either moving slowly, or in a potentially
unsafe manner. To run the robot at a reasonable speed, some
safety was sacrificed in setting the unknown tolerance in a
given column to 25 percent.

Finally, the PR2 has no way of detecting when it is stuck
and asking for help. We attempted to use wheel odometry
to detect these situations so the robot could email for help,
but this technique yielded too many false positives and
needs further work. Visual odometry gave more promising
results for detection of wheel slippage and stalls, but was not
integrated into the navigation system by the time of writing.

IX. CONCLUSIONS AND FUTURE WORK

We have developed a robust navigation system for robots
in office environments, and demonstrated 26.2 miles of
autonomous navigation in a real office environment. The
system uses a Voxel Grid and modelling of unknown space
to allow safe behavior in complex environments. The Voxel
Grid has a computational burden comparable to 2D grid-
based navigation techniques, but allows for better behavior in
the presence of 3D obstacles such as tables. The modelling
of unknown space also provides a principled approach to
determining maximum safe operating speed and required
sensor density for the robot. The system performs close to
limits set by the update rate of the tilting laser range-finder,
and demonstrates that a single tilting range-finder can be
sufficient to detect and avoid most obstacles in an office
environment.

There are many areas in which the system can be im-
proved, including: explicit modelling of dynamic obstacles
such as people, integration of high update-rate sensors such
as stereo cameras, improved detection and tracking of the
ground plane, improved detection and recovery behaviors
for collisions or caster stalls, integration with an online
Simultaneous Localization and Mapping system, and use of
a topological planner to handle large-scale environments. We
leave this and other potential improvements as future work
in our continued development of the PR2 navigation system.

X. ACKNOWLEDGEMENTS

The authors of this paper would like to thank the ROS
and PR2 development teams for their hard work towards
providing a stable platform for robotics development. Also,
we thank Steffi Paepcke for editing the text of this paper, and
Vijay Pradeep for his help with laser calibration. Finally, we

would like to thank all members of the Milestone 2 team for
their extensive testing of the PR2 navigation system.

REFERENCES

[1] W. Burgard, A. Cremers, D. Fox, D. Hédhnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,”

in Proc. of the National Conference on Artificial Intelligence, 1998.
[2] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,

D. Fox, D. Hhnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” in In
Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA99), 1999.

[3] I. R. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum
robot installations: A five year experiment,” in In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2003, pp. 3636-3641.

[4] R. Siegwart, “Robox at Expo.02: A Large Scale Installation of Per-
sonal Robots,” Special issue on Socially Interactive Robots, Robotics
and Autonomous Systems, no. 42, pp. 203-222, 2003.

[5] G. Kim, W. Chung, K. rock Kim, and M. Kim, “The Autonomous
Tour-Guide Robot Jinny,” in In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2004,
pp. 3450-3455.

[6] H. Surmann, A. Nchter, and J. Hertzberg, “An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization
of indoor environments,” 2003.

[7] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil,
D. Orenstein, J. Paefgen, 1. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun, “Junior: The stanford
entry in the urban challenge,” J. Field Robot., vol. 25, no. 9, pp. 569—
597, 2008.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in International Conference on Robotics and Automation,
ser. Open-Source Software workshop, 2009.

[9]1 M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm
for Model Fitting with Application to Image Analysis and Automated
Cartography,” Communications of the ACM, vol. 24, pp. 381-395,
1981.

[10] J. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems J., vol. 4, no. 1, pp. 25-30, 1965.

[11] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “On
the influence of sensor capacities and environment dynamics onto
collision-free motion plans,” in Proc. in IEEE International Confer-
ence on Intelligent Robots and Systems, 2002.

[12] D. Fox, “KLD-sampling: Adaptive particle filters,” in Proc. of Ad-
vances in Neural Information Processing Systems (NIPS), T. G.
Dietterich, S. Becker, and Z. Ghahramani, Eds. ~Cambridge, MA:
MIT Press, 2001.

[13] K. Konolige, “A gradient method for realtime robot control,” in Proc.
of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2000.

[14] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23-33, 1997.

[15] D. C. Moore, A. S. Huang, M. Walter, E. Olson, L. Fletcher,
J. Leonard, and S. Teller, “Simultaneous local and global state estima-
tion for robotic navigation,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2009.

[16] N. Koenig and A. Howard, “Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149-2154.

