
Cart Pushing with a Mobile Manipulation System:
Towards Navigation with Moveable Objects

Jonathan Scholz, Sachin Chitta, Bhaskara Marthi, Maxim Likhachev

Abstract— Robust navigation in cluttered environments has
been well addressed for mobile robotic platforms, but the
problem of navigating with a moveable object like a cart has
not been widely examined. In this work, we present a planning
and control approach to navigation of a humanoid robot while
pushing a cart. We show how immediate information about the
environment can be integrated into this approach to achieve
safer navigation in the presence of dynamic obstacles. We
demonstrate the robustness of our approach through long-
running experiments with the PR2 mobile manipulation robot
in a typical indoor office environment, where the robot faced
narrow and high-traffic passageways with very limited clear-
ance.

I. INTRODUCTION
Navigating safely while manipulating moveable objects is

a hard task especially in cluttered, crowded environments
where the amount of space available is limited and the
obstacles are non-stationary. Particularly in tasks like retail
stocking or table cleanup, the robot may need to manipulate
and carry a large number of objects. We address this need by
describing a system for smoothly and safely pushing carts in
such environments. This ability underlies not only navigation
with carts, but with many standalone mobile objects such as
chairs, tables, and boxes.

Robust mobile manipulation has been a topic of research
for a long time but there are few examples of real-world
applications. This shortage can be partially blamed on com-
plexity: mobile manipulation requires a careful synthesis
of navigation and manipulation capabilities. Navigating ef-
fectively requires consistent knowledge of the environment
around the system, often achieved through vision, laser,
proprioceptive and other types of sensors and an ability to
respond to sudden changes in the environment. Effecting
the environment, e.g. opening doors, often requires dealing
with constraints that, if violated, can results in large internal
forces. Mobile manipulation tasks like cart pushing will thus
require a tight integration of several components including
sensing, motion planning and control.

In this paper we present our approach to planning, control,
and sensing for navigation with moveable objects, with a
particular application to pushing holonomic utility carts. Our
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Fig. 1. The PR2 mobile manipulation robot with a holonomic cart

approach exploits a proven anytime planner for generating
near-optimal plans given a set of motion primitives that
can drive the robot and the cart. We also provide a local
controller which functions in the robot odometric frame and
is responsible for both following the plan and avoiding static
and dynamic obstacles observed by sensors. Using a combi-
nation of these controllers and a 3D sensing framework, we
are able to demonstrate reliable and robust navigation with
a holonomic cart in a typical office environment using the
PR2 mobile manipulation robot. Our work builds on previous
successes in both navigation and manipulation on the PR2,
and leverages the Robot Operating System (ROS) framework
for integration of the multiple components needed for robust
mobile manipulation [8], [11].

A. Related Work

The earliest results in pushing carts using robots were
achieved using a single manipulator mounted on a mobile
holonomic base [14], [15], [16]. In these systems the manip-
ulator came into contact with the cart at a single point, and
the problem was to solve for the effector forces required
to produce desired trajectories with the cart. This work
showed progress towards task-level cart manipulation, but
was limited to tracing simple open-loop paths with the cart
[16]. In contrast, our solution can execute smooth, arbitrary
trajectories in a closed-loop controller using two arms.

Subsequent work explored the use of full humanoid robots
for pushing carts with two arms. In principle, two arms can
simplify the cart control problem by fully constraining all
degrees of freedom. Honda’s ASIMO is capable of pushing
a cart while walking across a room and even up an incline,



but does not make use of its arms to articulate the cart for
navigation [13].

Several projects have explored the use of another hu-
manoid robot, the HRP-2, for pushing mobile objects. One
domain which shares our interest in manipulating large
objects is navigation among moveable obstacles (NAMO).
Although both domains involve navigation and manipulation,
NAMO addresses the complementary problem of navigating
the robot on a map containing obstacles that must be moved
in order to achieve the goal [7]. Rather than focusing
on navigation among static objects, our work focuses on
navigation of objects, amidst other dynamic obstacles.

In another mobile manipulation application with a biped
humanoid, [9] presented an HRP-2 capable of pushing
a human in a wheelchair. As with ASIMO and NAMO,
this project described a zero-moment-point (ZMP) offset
approach to achieving basic mobility with a mobile object
[2]. However, none of these examples with humanoid robots
demonstrated robust navigation in dynamic, cluttered envi-
ronments with tight clearances for the robot, and none took
advantage of both arms for articulation. The PR2 mobile
manipulation robot used in this study offers a stable, omni-
directional base. Its ability to articulate the cart greatly
enhances the reachable workspace for the robot since it can
now take tight turns in cluttered spaces.

The work that is closest to ours is the approach of
Lamiraux, et. al., who demonstrated motion planning for
a robot towing a trailer [4]. The trailer is attached to the
robot through a single degree of freedom pivot joint. In our
approach, we restrict the motion of the cart to be around
an (imaginary) pivot point in front of the robot. In contrast
to [4], we present a complete solution integrating 3D sensing
to develop a system capable of realtime navigation in a
cluttered indoor environment.

II. THE PR2 HARDWARE PLATFORM

The hardware used for the experiments in this paper is the
PR2 personal robot (Figure 1) which has an omni-directional
base and two 7-DOF arms. It is also equipped with a tilting
laser scanner mounted to the head, two stereo cameras,
an additional laser scanner mounted on the base, and a
body-mounted IMU. Encoders on each joint provide joint
angle information. The end-effector is a parallel jaw gripper
whose fingertips are equipped with capacitive sensor arrays,
each consisting of 22 individual cells. The laser scanner
mounted on the base is useful both for obstacle detection
and localization. The robot’s base is approximately 63 cm in
both length and width.

The cart used in the experiments in this work is a regular
holonomic utility cart. It has casters mounted at all four
corners and can thus be pushed in any direction. The top
shelf of the cart was removed to reduce the volume of the
region in front of the cart that is occluded from the PR2’s tilt
scanning laser sensor mounted on the head. The PR2 grasps
the handle of the cart as shown in Figure 2(a). The grasp is
sufficiently rigid to maintain its relative pose with respect to
the cart handle.

(a) The PR2 has a firm grasp on
the cart handle (right).

(b) State representation: Blue rectan-
gle represents the robot, and θ its
orientation. Green rectangle represents
the cart, and ψ its orientation in the
robot frame.

Fig. 2. Cart grasping (a), and state representation (b)

III. APPROACH

Navigation with moveable objects is a challenging plan-
ning and control problem. Ideally, a planner used for this task
should efficiently take advantage of the latent capabilities
of the robot, and react quickly to failure given a cluttered
and dynamic environment. We make almost no assumptions
about the structure of the environment. For simplicity, we
assume a known 2D map of the environment as a starting
representation. The map was built separately from real sensor
data using tools available in the ROS framework [11]. This
map is not, however, assumed to be a completely accurate
representation of the environment, which can contain both
static and dynamic obstacles such as people or other robots.
We demonstrate, through experiments, the ability of our
approach to deal with such static and dynamic obstacles that
are not initially known to the robot. We assume a known
geometric and kinematic model for the cart. This helps us
in localizing and controlling the cart relative to the robot.
Although the task of determining a model for the cart is, by
itself, challenging and interesting, it is beyond the scope of
this paper and will be examined in greater detail in future
work.

Overall our approach consists of a tight integration of
three different components: sensing for the cart and the
environment, motion planning for the robot and the cart, and
control of the robot and the cart along the desired path.

IV. SENSING

Our approach to mobile manipulation builds on compo-
nents developed for navigation and manipulation with the
PR2 [8], [12]. To navigate effectively, our system must
be able to differentiate between sensor readings that may
correspond to points on the cart or the robot, and those from
points in the environment. Sensor readings corresponding to
points on the cart are filtered out directly from a 2D costmap
representation (Figure 3) of the collision environment if their
2D projection falls within the known polygonal footprint of
the cart.

Two approaches were implemented to sense the pose of
the cart relative to the robot. First, a checkerboard attached to
the cart was used to localize the cart pose relative to the robot



Fig. 3. A view of the local costmap. Red cells are lethal obstacles while
blue cells lie within a threshold distance of the nearest obstacle.

using the cameras mounted on the head of the PR2. Second,
the known initial positions of the grasps of the two end-
effectors on the cart were used to provide a proprioceptive
estimate of the cart relative pose. Note that this assumes that
the cart handle stays rigidly fixed relative to the end-effectors
of the two arms, which proved a safe assumption in our
experiments. Indeed, we found the proprioceptive estimate
to be more stable than the checkerboard estimate due to the
visual noise and jitter in the camera.

V. MOTION PLANNING

The motion planner provides global collision-free plans
between the start pose (the current pose of the robot) and
the final desired position of the robot and the cart. There
are several approaches to motion planning for mobile robots
that could be applicable in this case, including both graph
and sampling-based planners [3]. We choose to use a graph
based approach coupled with an anytime planner. As we shall
describe in the next few sections, the choice of such a planner
allows us to specify candidate motions of the robot and cart
system (motion primitives) that allow the robot to navigate
tight turns.

We first describe the construction of the graph itself and
then we describe the construction of the transitions between
the nodes in the graph. We will then briefly describe the
algorithm used to search the graph for low-cost solutions.

A. State Representation

To construct the graph, we need to specify the state
representation for the nodes of the graph. A full state
representation would include the 7 degrees of freedom for
each arm, the 3 degrees of freedom of the robot base
and the 3 planar degrees of freedom of the cart relative
to the robot base. However, as noted earlier, the arms of
the robot are constrained by the grasp on the cart, which
itself is constrained to planar motion. One simpler rep-
resentation to eliminate redundancies could be the planar
degrees of freedom of both the base of the robot and the
cart (in the robot reference frame). Such a representation

Fig. 4. Four example motion primitives. Top left: rotate in place, Top
right: move forward, Bottom left: move diagonally, Bottom right: articulated
motion primitive. The red arrow indicates the final pose of the robot at the
end of each primitive.

(x, y, θ, xc, yc, θc) would result in a highly controllable 6-
dimensional state space for the system. However, we choose
instead to restrict the motion of the cart by specifying a
fixed point of articulation for the cart in the robot frame. This
choice is motivated planning considerations — it reduces the
dimensionality of the search space for planning while still
retaining enough flexibility to allow the articulation needed
to execute tight turns. Our choice of state representation
(x, y, θ, φ) is shown in Figure 2(b).

B. Transitions

The transitions between nodes in the search graph are
defined using a lattice-based planning representation [5],
[10]. A lattice-based planning representation discretizes the
configuration space into a set of states. The connections
between the states are also discretized and every connection
represents a feasible path. The lattice representation can be
used to specify the motion planning problem as a graph-
search. The key advantage of this representation, in contrast
to other approaches like 4-connected or 8-connected grids, is
that every connection between states is a feasible connection.
This makes the lattice-based representation a good choice for
constrained systems, such as a robot with an articulable cart.

Since the PR2 robot is omni-directional, we choose to
enable transitions that allow the robot to move forwards,
along diagonal paths, rotate in place, move backwards and
move forwards and backwards while rotating. These transi-
tions are thus motion primitives and can be used to generate
a search graph of the task space. In order to exploit the
controllable degrees of freedom of the robot+cart system,
we also designed primitives for simultaneous navigation and
articulation. Four of the motion primitives used are illustrated
in Figure 4. During the search process, the planner checks
the entire motion primitive between parent and child nodes
for collisions using the global costmap.



C. Cost Function

In general, the planner can accommodate an arbitrary cost
function reflecting such objectives as travel time, risks in-
volved in hard-to-execute maneuvers, distance from obstacles
and other metrics. In our experiments, the cost of each edge
in the constructed graph corresponded to the time required
to execute the motion primitive represented by the edge.
The cost of the edge was also increased further when the
corresponding motion primitive traveled close to an obstacle.
Finally, we also increased the cost of edges for certain motion
primitives that were harder to execute.

D. Graph Search

Given a graph defined as above and a cost function
associated with each action, an efficient search method is
required for finding a solution path. A* search is one of
the most popular methods for this problem [1]. It utilizes
a heuristic to focus the search towards the most promising
areas of the search space. While highly efficient, A* aims to
find an optimal path which may not be feasible given time
constraints and the dimensionality of the problem. To cope
with limited deliberation time, we use an anytime variant of
A* — Anytime Repairing A* (ARA*) [6]. This algorithm
generates an initial, possibly suboptimal solution quickly
and then concentrates on improving this solution while time
allows. The algorithm guarantees completeness (for a given
graph) and provides bounds on the sub-optimality of the
solution at any point of time during the search. Furthermore,
this bound, denoted by ε, can be controlled by a user. In all of
our experiments, we set the initial ε to 3.0, implying that the
cost of the returned solution can be no worse than 3.0 times
the cost of an optimal solution (even though the optimal
solution is not known). In nearly all of our experiments,
ARA* was able to decrease the bound on on sub-optimality
to 1.0 (corresponding to a provably optimal solution) within
the time we allocated for planning.

Similar to [5], the heuristics we used were computed
online as costs of 2D (x, y) paths that take into account
obstacles. These heuristics were computed via a single
Dijkstra’s search before each planning episode.

E. Local Control

Given a path from the global planner, i.e., a set of
waypoints of the form (x, y, θ, φ), a local controller is
responsible for translating this path into commands for the
base and arms. It runs at 20 hz in the odometric (rather
than the map) frame. It therefore provides robustness against
dynamic obstacles and localization errors. It aims to follow
the global plan as closely as possible: if the plan is found to
be in collision, it will slow down or stop rather than attempt
to move around the obstacle. If it is unable to follow the
global plan, the local controller aborts, forcing the system to
re-plan a global path.

The local controller operates by moving its desired goal
along the global plan returned by the planner. Desired base
velocity (vb) and cart (vc) velocities are determined using a

proportional controller (Equation 1).

vb = TbK
b
peb (1)

vc = Kc
pec (2)

where eb and ec represent the errors in base pose (expressed
in the global frame) and cart pose (expressed in the robot
frame), Tb transforms the desired base velocity into the base
frame and Kb

p and Kc
p are positive definite gain matrices.

The errors are given by,

eb = qdb − qab

ec = qdc − qac

The superscripts d and a indicate desired and actual veloc-
ities respectively. The desired base and cart command ve-
locities are scaled appropriately based on desired maximum
speeds for the base and the cart.

Note that because of our choice to parametrize the base
motion by articulating the cart about a fixed point in the
robot base frame, the position of the center of the cart and
orientation of the cart qc = (xc, yc, θc) are a function of
the cart articulation angle φ. The position and orientation of
the base in the global frame, qb = (x, y, θ) is completely
specified by the plan. The desired base (vb) and cart (vc)
velocities are determined using a proportional controller.

The velocities for the base and the cart are forward
simulated in the odometric frame to check for collisions
against the local costmap. If they result in collision, the
velocities are scaled down until a collision is avoided, and
failure is declared by the local controller if no scaling is
possible. The failure of the controller triggers global re-
planning. These steps serve to slow the system down when
operating near obstacles, and results in re-planning if failure
of the local controller is unavoidable.

F. Cart Articulation

Articulation of the cart is critical for narrow-tolerance
navigation problems, such as passing through doors, round-
ing corners in narrow hallways, or avoiding obstacles in
densely cluttered areas. Where previous approaches required
error-prone analysis of contact forces and dynamics, the
presence of two arms allowed us to produce accurate cart
trajectories simply by transforming the desired cart velocity
appropriately into desired velocities for the two end-effectors
(vee). These velocities are then mapped into the joint space
of each arm using the transpose of the manipulator Jacobian.
The net result is a set of desired joint velocities (qdarm) for
each arm that allow the system to track the desired cart
velocity:

q̇darm = JT vee (3)

VI. EXPERIMENTAL RESULTS

We conducted extensive experimentation to validate the
robustness and reliability of our system. The experiments
were carried out in a typical office building with furniture and
people. The robot was completely autonomous and would
follow a sequence of waypoints defined on the building



Fig. 5. A long planned path using the lattice-based planner. The red arrow
indicates the goal for the robot base, the blue polygon is the footprint of
the robot during the plan and the green rectangle represents the cart. Note
the frequent use of the articulated motion primitives.

(a) (b)

(c) (d)

Fig. 6. Articulating the cart to execute a tight turn.

map. Waypoints were chosen such that the robot would have
to move through tight spaces and high-traffic areas. The
global planner was allocated a maximum planning time of
10 seconds. In most cases, the planner took significantly less
time to plan the first solution. Data logged for the global
planner included time to first plan, time to final plan, and
cost of the plan. An example global plan returned by the
planner on the global map is shown in Figure 5 which shows
the plan for a distant goal.

The system performed exceptionally well. It was able to
handle the presence of people in its vicinity, stopping when
they suddenly stepped in front of it, and either re-planning or
restarting once they moved away. It never hit any obstacle in
the environment. Figure 6 provides a series of snapshots of a
run of the robot as it was performing a tight 90 degree turn.
Figure 7 contains a series of snapshots showing the robot
stopping in time to avoid hitting a person and then planning
a path around the person.

Analysis of the data from the planner showed that it was
generally successful in finding paths quickly. The analysis is
summarized in Table VI for one run lasting nearly an hour in
which we repeatedly directed the robot to goals at far regions

(a) (b)

(c) (d)

Fig. 7. Stopping in presence of person and then replanning to go around
him.

of the building. The time to first solution corresponds to the
time (in seconds) taken to find a solution with the initial
value of ε = 3.0. The number of expands corresponds to the
number of states that were expanded in getting to the initial
solution (ε = 3.0).

number of planner calls 134
expansions (first solution) (mean) 15157.87
expansions (first solution) (std. dev.) 24529.92
time to first solution (secs) (mean) 1.23
time to first solution (secs) (std. dev.) 1.93
final epsilon (mean) 1.30
final epsilon (std. dev.) 0.61
number of planning failures 25

TABLE I
GLOBAL PLANNER STATISTICS FROM A LONG RUN.

Of the 134 calls that were made to the planner, 25 did
not succeed. An examination of these calls showed that
they failed much before the allocated final time for the
planner expired. There are several reasons that this could
have happened. If the robot was blocked by people, no plan
would be found for getting out of a tight spot and the planner
would fail. Once the people moved out of the way and the
costmap was clear, the planner would be able to find a path
to its goal. Spurious sensor readings were another frequent
cause of failures. Although we attempted to filter out these
readings, they were never completely eliminated and would
often completely block all plans for the robot. The recovery
behavior helped in clearing out these spurious reading but
improving the quality of our sensing is essential to achieve
longer robust continuous operation.

The addition of the articulated primitives clearly helped
the robot traverse tight corridors, made the plans look much
more natural, and reduced the total footprint of the robot as
it was making turns. Figure 8 illustrates the plans for a turn
through -90 degrees. The motion plan on the left was made
with a set of articulated motion primitives while the plan on
the right was planned without them.



Fig. 8. The overall footprint of the robot when using articulated primitives
is much smaller (left) than when it is not using them (right). The red arrow
indicates the goal for the robot base, the blue polygon is the footprint of
the robot during the plan and the green rectangle represents the cart.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated a robust and reliable
system for cart pushing in a typical office environment. Our
approach is, to the best of our knowledge, the first demon-
stration of such a system in an unconstrained environment.
Our method is able to handle tight turns using articulation
of the cart, to escape very tight spots requiring the planning
of a series of small moves, and can respond to the presence
of dynamic obstacles such as humans.

The sensing component of our system was the most
frequent source of failure. We plan to address this in future
work, possibly through the use of new more accurate 3D
sensors or additional sensors mounted on the cart itself. In
addition, we plan to incorporate more proprioceptive sensing
to detect and account for changes in indoor terrain, e.g. if
the cart were to get stuck on a wire on the ground. We also
hope to improve the localization of the cart pose relative
to the robot by fusing information from proprioception and
visual perception.

Our local controller was able to follow paths very closely
throughout the experiment, but we would like to be able to
track the desired plan at faster speeds. Currently, our speed
is limited by safety concerns, by noise in sensing, and by
the small amount of compliance in the grasp between the
cart and the robot. Safety is a critical issue, especially in
the absence of a sensor on the front of the robot. The noise
in sensing, especially in the tilting laser sensor, seems to be
worsened with faster motion of the robot. The compliance
in our grasps implies that if we move too fast, the cart starts
overshooting its desired path and could possibly come into
contact with the environment.

Our long-term goal is to achieve navigation with arbitrary
moveable objects. In this context, our approach is a good
starting point since it provides a solution to the motion
planning and control of such objects. However, a full real-
world solution would also include being able to determine,
online, the geometric and physical model for any object. We
could attempt to learn the model for the object by exploring
different actuation schemes for it online. The learnt model
would then form a basis for the design of new feasible
motion primitives for the object that the planner could use
to plan global plans. Our other goal is to be able to respond
faster to changes in the environment and quickly plan around
obstacles locally while still following (nominally) the global

plan. These issues are currently the focus of active research.
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