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Abstract. Well-functioning autonomous robot solutions heavily rely on the avail-
ability of fast and correct navigation solutions. The presence of dynamic/moving
objects in the environment poses a challenge because the risk of collision in-
creases. In order to derive the best and most foreseeing re-routing solutions for
cases where the planned route suddenly involves the risk of colliding with a mov-
ing object, the robot’s navigation system must be provided with information about
such objects’ positions and velocities.
Based on sensor readings providing either 2-dimensional polar range scan or 3-
dimensional point cloud data streams, we present an efficient and effective method
which detects objects in the environment and derives their positions and velocities.
The method has been implemented, based on the Robot Operating System (ROS),
and we also present an evaluation of it. It was found that the method results in
good accuracy in the position and velocity calculations, a small memory footprint
and low CPU usage requirements.
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1 Introduction

Fast and correct navigation, including object avoidance, is a crucial ability for any
autonomous agent (e.g. autonomous robot, human, etc.) working in a dynamic envi-
ronment. Navigation is often based on a global (i.e. known and static) map of the
environment. When the environment might be dynamically changing, account is usually
also taken to sensor readings, which are used to create a local (i.e. temporarily valid)
map, on top of the global map, to avoid collisions with dynamic objects.

Based on the idea of using a global and a local map, a novel method, introducing
navigation based on magnetic flow fields, has been proposed [24]. This method relies
on the existence of a base flow field (cf. a global map), showing a collision-free path
(if any) from the start point to the goal point. In case objects can move, or be moved,
they cannot simply be static parts of the base flow field. The method therefore relies
on information about the position and velocity of such objects. Each object is seen as
having a dipole flow field, whose magnitude is proportional to the speed of the object
and whose direction is aligned with its velocity. The total flow field, and thus the path,
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is updated in accordance to how the position of each detected object affects it. This
strategy provides a very foreseeing and effective solution to the object avoidance re-
routing problem. The proposed method [24] is destined to be implemented within the
Robot Operating System, ROS [22].

In this paper, we present an effective and efficient method for detecting objects and
deriving the position and velocity of these. The method relies on receiving a sequence
of either 2-dimensional (2D) polar range scans or 3-dimensional (3D) point clouds. Our
method thus serves to satisfy the prerequisite knowledge about moving objects for the
mentioned path-planning algorithm, and for a multitude of other systems relying on the
information provided by our system.

An implementation of the method as a ROS library and a few executable ROS nodes
is provided open source [13]. Two of the nodes take as input a stream of LaserScan [2]
messages and a stream of PointCloud2 [5] messages, respectively, and use the library
for detecting objects and deriving their positions and velocities. The position and velocity
of each detected object are derived in several ROS coordinate systems (from here on
referred to as frames) [18], including map, so that an agent’s findings can be shared with
other agents in a globally interpretable way. Thus, an agent could easily be made to
benefit from other agents’ findings. The library also provides the possibility for the user
to define a confidence value for each found object, if desired. The implemented method
has been verified and evaluated, both using simulations and physical experiments.

The rest of this paper is organized as follows. Section 2 details the foundations of our
approach for finding moving objects, based on a single sensor data stream, while Sect. 3
presents our approach for utilizing several sensor data streams. Section 4 briefly explains
the ROS-based implementation of our method. Section 5 explains the experiment setup
we have used to perform the evaluation (based on the implementation) which is presented
in Sect. 6. Some related research is presented in Sect. 7, and Sect. 8 concludes the paper
and states some future tracks for our research.

2 Finding Moving Objects in 2D Polar Range Scan Data

This section presents our method for finding the positions and velocities of detected
moving objects (no object classification is performed). The method is founded on the
data having the form of consecutive 2D polar range scans of the environment (cf. Fig. 1).
The sensory source is assumed always to produce the same number, n, of scan point
ranges. Each range should represent the distance to the closest obstructing object at a
given and known angle, around the sensor z-axis and relative the sensor x-axis (cf. the
data produced by a 2D laser range scanner). Note, however, that the above assumptions
only represent the internal structure of our method and that an actual sensory source
could deliver for example 3D data and have the z-axis pointing forward instead of the
x-axis (cf. an optical frame [11]), as will become apparent in Sect. 4. The frame of the
sensor is assumed to be Cartesian and right-handed.

Each scan is assumed to have an attached timestamp, representing the time at which
the scan was acquired. The scans are assumed to be streamed in messages (an actual
system need not have this type of setup, this is just the terminology we use to describe
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Fig. 1. 2D polar range scan example—a circular object in front of a wall. Scan rays are numbered.

Source
Range scan Find moving objects

in scan
moaStream
msgMOA

Receiver

Receiver

Fig. 2. Architectural description.

our method), from a single source (i.e. sensor). The data related to the set of found
moving objects is, in turn, streamed in a message, to a set of receivers (cf. Fig. 2).

The main structure of our method is outlined in Algorithm 1. We keep a history of
data scans in a bank, bank (cf. Fig. 3), which is similar to a circular buffer, except that
incoming data is immediately handled. Setting the size, m, of the bank appropriately
allows us to derive accurate velocities for the found objects, as discussed below. The
oldest and newest scan messages in the bank are pointed to by oldest and newest,
respectively.When amessage is received on the stream, dataStream, the (timestamped)
range data of that message replaces the oldest range data in the bank. To allow for
reducing the influence of high-frequent noise, the received range data can be adapted
using exponential moving average (EMA; row 7). In Algorithm 1, the parameter α ∈
[0, 1] represents the degree of weighting decrease—a higher value of α decreases the
influence of old range data faster.

Objects are detected in the incoming scan data message by iterating through, com-
paring and grouping consecutive range values. First, the next valid scan point is found
(rows 11–15). To be valid, its range value must lie wihtin [thmin

dist , th
max
dist ]. Second, all

consecutive valid scan points, whose ranges are not pair-wise separated by more than
thmax

δedge
, are counted (rows 16–24). The derived scan points are considered to constitute

one unique object. If the considered object includes the scan point with the lowest
index and the sensor delivering the messages is viewing 360◦, then the high end of
the scan points must also be accounted for, since they might also belong to this object
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Algorithm 1. Find moving objects
Input: dataStream, bank, oldest, newest, α, thmax

δedge
, thmin

pts , th
min
dist , th

max
dist , th

max
δdist

, thmax
δwidth

, thmin
conf

Output: msgMOA on moaStream
1 procedure
2 loop
3 Create new msgMOA
4 Receive msg with timestamp, timestamp, and array of distances, data, from dataStream
5 bank[oldest].timestamp← msg.timestamp
6 for all i iterating msg.data do . Parallel operation—replace oldest data (EMA:ed)
7 bank[oldest].data[i] ← α × msg.data[i] + (1 − α) × bank[newest].data[i]
8 Update oldest and newest pointers
9 i← 1

10 limit← |bank[newest].data |
11 while i ≤ limit do . Sequential operation
12 rangei ← bank[newest].data[i] . First point of object
13 if rangei < thmin

dist or th
max
dist < rangei then

14 i← i + 1
15 continue
16 nrObjectPoints← 1 . Object consists of scan point i so far
17 rangePrev← rangei
18 for j← i + 1 ; j ≤ |bank[newest].data | ; j← j + 1 do . Count object scan points
19 rangej ← bank[newest].data[j]
20 if thmin

dist ≤ rangej ≤ th
max
dist and |rangePrev − rangej | ≤ thmax

δedge
then

21 nrObjectPoints← nrObjectPoints + 1
22 else
23 break
24 rangePrev← rangej
25 if i = 1 and sensor views 360◦ then . Valid first point, must also account high end of scan
26 rangePrev← rangei
27 for k← |bank[newest].data | ; j < k ; k← k − 1 do
28 rangek ← bank[newest].data[k]
29 if thmin

dist ≤ rangek ≤ th
max
dist and |rangePrev − rangek | ≤ thmax

δedge
then

30 nrObjectPoints← nrObjectPoints + 1
31 limit← limit − 1 . Do not account for this point from lower end
32 else
33 break
34 rangePrev← rangek
35 if thmin

pts ≤ nrObjectPoints then
36 Calculate position, positionnew, and width of object
37 Try to track object through bank given thmin

dist , th
max
dist , th

max
δedge

thmax
δdist

, thmin
pts , th

max
δwidth

38 if object could be tracked then
39 Calculate position, positionold, in oldest scans
40 δt ← bank[newest].timestamp − bank[oldest]).timestamp
41 velocity← (positionnew − positionold)/δt
42 Calculate confidence
43 if thmin

conf ≤ confidence then
44 Create MO from timestamp, positionnew, velocity and confidence
45 Add MO to msgMOA
46 i← j . Skip already-considered scan points
47 Publish msgMOA on moaStream if we found at least one object, otherwise discard msgMOA
48 end procedure
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Fig. 3. The bank of m consecutive messages, each containing n scan points.

(rows 25–34). If the found object is constituted by less than thmin
pts points, then the object

is discarded and the search continues. Otherwise, the found object is further considered.
Since the angle, relative the sensor, for each scan point is known, it is straightforward

to calculate the coordinates, in the frame of the sensor, of the closest point and the
estimated center point of the found object. It is also straightforward, using the law of
cosine, to calculate the seen width of the object.

The velocity of the found object is calculated based on how it has moved, relative
the sensor (more on this in Sect. 4), from its position in the oldest scan data message in
the bank to its position in the newest scan data, and on the duration of this movement.
However, for this calculation to be possible, the object must exist in the oldest scan data.
Therefore, we try to track the object through each scan data message stored in the bank,
from the newest to the oldest (cf. Fig. 4). The basic assumption while tracking the object
is that its center scan point in the newer data covers some part of the object in the older
data. There are several unrelated reasons for not succeeding in tracking an object: the
center scan point in the newer data tracks to a scan point in the older data whose range
value lies outside the interval given by [thmin

dist , th
max
dist ]; the center scan point in the newer

data tracks to an object constituted by less than thmin
pts scan points (given thmax

δedge
); the

distance to the object (from the sensor) differs more than thmax
δdist

between two consecutive
scans; or the difference in seen width of the object between two consecutive scans is
larger than thmax

δwidth
.

The size of the bank can, clearly, affect the accuracy of our method. For example,
a relatively small size, in combination with a sensor which is producing scans with a
relatively high frequency,means that positionnew−positionold and δt are,most likely,
too small in relation to the noise in the data, to accurately estimate the current velocity of
the object. On the other hand, a relatively large size, in combinationwith a sensorwhich is
producing scanswith a relatively low frequency,means that positionnew−positionold
and δt , most likely, do not cover the instantaneous changes inmovement well enough. For
the latter case, it is easy to see that the estimated velocity of a constantly accelerating
(or retarding) object could be very imprecise—the change in position between two
consecutive scans is larger (or smaller) for the newer scans than for the older scans.
Thus, to yield the best result, the bank size should be adapted to the scan rate of the
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(b) Tracking failure.

Fig. 4. Tracking an object through the bank—gray scan points indicate actual location.

sensor and the environmental context, if possible. (We, of course, also have the case
where the sensor per se is not fast enough to satisfactory handle the given environmental
context—e.g. if the environment contains objects moving very rapidly—but, this issue
is very difficult to solve by means of adapting the bank size.)

If we are confident enough about our calculations, then the object is added to msgMOA,
which is published on moaStream, provided that at least one object was found, after
the entire newest scan data has been searched for objects. How the confidence value,
confidence, should be calculated depends on the given context: how fast objects in the
environment move, how fast our robot moves, with what rate the source produces scans,
how large the bank is etc. This is further discussed in Sects. 4 and 5.

The details of a found object are stored as a MO object. MO should be viewed as
containing four data fields: a timestamp, timestamp; a position, position; a velocity,
velocity; and a confidence value, confidence. The msgMOA should be viewed as an
array, list or the like, containing MO objects.

3 Handling Several Sources

As previously stated, the method, outlined in Algorithm 1, can receive input from a
single source only. If we desire to use s sensory sources for finding moving objects, then
one instance of the method must be applied for each source (cf. Fig. 5).

Whenever the method is instantiated for several sources, and we know how the
sources are physically located in relation to each other, then we can determine whether
an object seen by one source is the same object which is seen by another source. If several
sources see the same object, then that object should be assigned a higher confidence
value (cf. Fig. 5). This section presents a method for achieving this.

Our strategy is architecturally visualized in Fig. 5 and outlined in Algorithm 2.
moaStream1, . . . , moaStreams are the streams on which msgMOAmessages are received.
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We keep a cache containing the latest message from each source. For each incoming
msgMOA, and each MO it contains, a matching object is searched for in the cached
message from all other sources. An object is considered to match another object if the
two objects’ timestamps, positions and velocities do not differ by more than thmax

δt
,

thmax
δpos

and thmax
δvel

, respectively. The considered object’s confidence value is increased
by the average confidence of all objects, seen by other sources, found to match it (but
upper-bounded by 1). All objects in msgMOA, with possibly increased confidence values,
are then further reported on moaStream.

Source1

Sources

Range scan Find
moving
objects

Range scan

Find
moving
objects

...

moaStream1

moa
Str

eams

Enhance
confidence

...
moaStream
msgMOA

Receiver

Receiver

Fig. 5. Enhancing the confidence by using s sources.

Algorithm 2. Enhance confidence of MO
Input: moaStream1, . . . , moaStreams , thmax

δt
, thmax

δpos
, thmax

δvel
Output: msgMOA on moaStream

1 procedure
2 Create cache of s messages, one per source
3 loop
4 Receive msgMOA from moaStreami , where i ∈ {1, . . . , s}
5 Replace cached message for source i with msgMOA
6 for all MO in msgMOA do . Parallel operation
7 confidenceSum← 0
8 matchingSources← 0
9 for all sources, j, such that j , i do . Parallel operation

10 for all MO j in j’s cached message do . Parallel operation
11 if |MO.timestamp − MO j .timestamp | ≤ thmax

δt
and

|MO.position − MO j .position | ≤ thmax
δpos

and
|MO.velocity − MO j .velocity | ≤ thmax

δvel
then

12 confidenceSum← confidenceSum + MO j .confidence
13 matchingSources← matchingSources + 1
14 break
15 if 0 < matchingSources then
16 MO.confidence← min(1, MO.confidence + confidenceSum/matchingSources)
17 Publish msgMOA (with possibly updated MOs) on moaStream
18 end procedure
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4 Implementation

The confidence-enhancing method of Algorithm 2 has been implemented [13] in C++
as a ROS node [22]. Since ROS provides a communications layer, structured the way
assumed by our algorithms, the implementation of the confidence enhancer node is very
straightforward.

The functionality of the bank (i.e. storing a history of incoming range scan data, and
deriving the position and velocity of objects found based on that data), as outlined in
Algorithm 1, has been implemented [13] as a ROS C++ library. The ROS transformation
system, tf [10], is used for transforming the object position and velocity from the sensor
frame into the base_link, odom and map frames [18]. This automatically accounts
for how the sensor has moved, as long as such information is available. The output
messages (i.e. msgMOA) are of the type MovingObjectArray.msg [13]. This message
type contains the name of the sending node and an array of MovingObject.msg [13]
messages, where each such message hence corresponds to a MO object.

The bank can be told to publish messages meant for visualization in RViz [15]. We
use several types of “visualization” messages: a LaserScan [2], which visualizes each
scan point range, adapted using EMA, from the newest receivedmessage (the scan points
of found objects have an intensity distinct from scan points not belonging to a found
object); a LaserScan, which marks the point on each found object closest to the sensor;
a MarkerArray [4], which adds an arrow (using a Marker [3] message) for each found
object, where the tail of the arrow marks the position of the object and the direction and
length of the arrow shows the velocity of the object; a MarkerArray, which adds a line
(using a Marker message) for each found object, showing the change in position (from
the oldest scan to the newest scan in the bank) for that object; and a MarkerArray,
which adds a line (using a Markermessage) for each found object, showing the width of
the object (in the newest scan). The velocities can be shown in any of the four available
frames but, the default frame is map.

The bank implementation provides some functionality for handling LaserScan or
PointCloud2 [5] input messages in a convenient manner (the user of the library can
simply provide the bank with a message of any of these types and the data of that
message is added to the bank automatically). An instance of the bank should, of course,
only be used for a single source, sending only one of these message types, as discussed
in Sects. 2 (cf. Fig. 2) and 3 (cf. Fig. 5).

The ranges in a LaserScanmessage can be handled without modification, since the
bank expects a 2D polar structure. On the other hand, each point in a PointCloud2
message must be extracted and projected, from a 3D volume onto a 2D plane, before it
can be stored in the bank. The projection, in our implementation, is made from (x, y, z)
volume coordinates to (x, y) plane coordinates. A 2D polar range scan structure (as
expected by the bank) is achieved, by mapping each resulting (x, y) coordinate onto one
or several (based on a given voxel grid leaf size) scan point(s) of the bank data structure.
If several (x, y) coordinates map to the same scan point(s), then the chosen range value
for that scan point is the distance to the coordinate closest to the sensor. All this, of
course, makes the handling of PointCloud2 messages more costly.

A sensor-interpreting application, using our bank library, is required to implement a
function for calculating the confidence values for the found objects. The function should



Detecting Moving Objects and Deriving Their Positions and Velocities 9

take as input: the information derived for that object; the arguments to the bank (such
as the bank size, thresholds etc.); the difference in time between the newest and oldest
data in the bank; and whether transformations of the object position and velocity, from
the sensor frame into the base_link, odom and map frames, were possible. This allows
for the user to make a context-based implementation of the confidence calculation. Note
that all found objects can be reported, using the calculation confidence← 1.

Along with the bank library, we provide [13] two sensor-interpreting executable
ROS nodes, one for handling LaserScan message streams and one for handling
PointCloud2 message streams, which use the bank for finding moving objects. Each
of these two nodes can take any data stream of its handled type as input which allows for
them to be used on data streams from a large variety of sensors. The size of the bank (i.e.
the number of scan messages it stores) can be automatically calculated by the nodes,
based on measuring the rate of received scan messages and a desired time interval which
the messages in the bank should cover.

We also provide [13] several ROS launch files for running our sensor-interpreting
nodes. The sensor-interpreting nodes can be launched to run in a live setting, with actual
physical sensors providing the data streams. Or, they can be launched in a simulated
setting, with the sensor data coming from a provided recording of a 360◦ LIDAR and a
depth camera (more about these sensors in the next section).

5 Experiment Setup & Verification

Themoving-object-finding algorithmand the confidence-enhancing algorithmhave been
evaluated on a research laptop receiving input from a Slamtec RPLIDARA2M8 [6] 360◦
LIDAR (providing a LaserScan [2] message stream) and an Intel RealSense D435 [1]
depth camera (providing a PointCloud2 [5] message stream) over USB 3.0 ports. The
sensors were physically mounted close together with overlapping fields of view. The
laptop had an Intel i7 quad-core processor clocked at 2.9 GHz and 32 GB of DDR4
(2.4 GHz) Random Access Memory (RAM).

The evaluation environment consisted of an outdoor area with varying sunlight
conditions. An object, about 70 cm wide and moving with speeds between 0 m s−1 and
2 m s−1, was used for detection purposes.

Experiments showed that when the bank covered a time period of 0.5 s, good ac-
curacy in the position and velocity calculations resulted. The bank size was therefore
automatically calculated by the sensor-interpreting nodes to cover a time period of 0.5 s.
This resulted in a bank size of 6 messages for the LaserScan interpreter and 10 mes-
sages for the PointCloud2 interpreter (the rate of received messages on the two streams
were about 11 Hz and 18 Hz, the latter after voxel-grid-filtering, respectively).

The points of the PointCloud2 messages were mapped onto a 2D polar range scan
structure with a field of view of 180◦ and a total of 360 scan points.

The confidence value for each found object, MO, was derived using Eq. 1. Here,
the resulting confidence value is cropped to lie within [0, 1]; α is the degree of EMA
weighting decrease; expr1 ? expr2 : expr3 is expr2 if expr1, and expr3 otherwise;
transformSucces is a boolean value representing whether we could transform MO’s po-
sition and velocity from the sensor frame into the base_link, odom and map frames [18];
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δt is the difference between the timestamps of the newest and oldest scans in the bank;
width(MO) is the current seen width of MO and widthOld(MO) is the width of MO as
found in the oldest scan in the bank; and baseConfidence is a measure for how well
we trust the given sensor (we used 0.3 for the LIDAR and 0.4 for the camera).

max(0,min(1, α × ((transformSucces ? 0.5 : 0.0)
+ −10

3 (δt − 0.2)(δt − 0.8)
− 5.0 × |width(MO) − widthOld(MO)|
+ baseConfidence)))

(1)

The expression involving δt in Eq. 1 is visualized in Fig. 6 and results in a maximum
confidence increase when δt = 0.5 s, which is the time period that the bank is expected
to cover. If δt < 0.2 s or 0.8 s < δt , then the resulting confidence value is decreased.
Thus, successful transformations of the object’s position and velocity, a well-adapted
bank size in combination with a well-functioning data stream from a trustworthy sensory
source without much high-frequent noise, and a similar old and current object width
result in high confidence.

δt0.5 1.0

-0.6

0

0.3

Fig. 6. The effect of δt on the confidence: −10
3 (δt − 0.2)(δt − 0.8)

To verify the correctness of Algorithms 1 and 2, we logged all found objects and
verified the correctness of the derived position and velocity in the different frames,
for both sensors. We also used RViz [15] to visually verify the correctness of the
derived information. The used EMA weighting decrease factor and thresholds for the
two different cases of using Algorithm 1 are presented in Table 1 and the used thresholds
for Algorithm 2 are presented in Table 2.

All experiments showed good accuracy in the position and velocity calculations.
The Valgrind [20] heap profiler, Massif, was used for some long-running experiments
to successfully verify the lack of memory leaks in our implementation. It is hence our
opinion that the algorithms and implementations can be considered sufficiently and
successfully verified.
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Table 1. Used EMA weighting decrease factor and thresholds for Algorithm 1.

LaserScan PointCloud2

α 1.0 α 1.0
thmax
δedge

0.2 m thmax
δedge

0.15 m
thmin

pts 4 points thmin
pts 4 points

thmin
dist 0.01 m thmin

dist 0.01 m
thmax

dist 8 m thmax
dist 6.5 m

thmax
δdist

0.4 m thmax
δdist

0.4 m
thmax
δwidth

20 points thmax
δwidth

50 points
thmin

conf 0.5 thmin
conf 0.5

Table 2. Used thresholds for Algorithm 2.

Confidence Enhancer

thmax
δt

0.1 s
thmax
δpos

0.1 m
thmax
δvel

0.1 m s−1

6 Evaluation

To evaluate the presented method, we have measured several quantities and qualities.
The first such is the resident set size, i.e. memory usage (the RAM page size was 4 kB).
For the LaserScan-interpreting node, this was constant and showed 11 896 kB in our
experiments. For the PointCloud2-interpreting node, this varied, depending on the size
of the incoming messages (voxel-grid-filtered point clouds vary in size depending on
how close objects are to the sensor) but never exceeded 40 048 kB in our experiments.
For the confidence-enhancing node, this was constant and showed 10 436 kB in our
experiments. Thus, we find the memory footprints of these different nodes to be of
reasonable size and provide a good opportunity for achieving a high-performing system.

The second measured quantity is the average CPU usage. For the LaserScan-
interpreting node, this was about 1.3%. For the PointCloud2-interpreting node, this
was about 25%. For the confidence-enhancing node, this was about 0.2%. The CPU
usage is of course dependent on the rate of the incoming messages and the complexity
of the presented algorithms. However, the LaserScanmessages arrive at a rate of about
11 Hz (see the previous section) and are of constant size, so the CPU usage required by
the implementation of Algorithm 1 to find objects seems to be quite low. The higher CPU
usage visible for the PointCloud2 part thus seems to stem from reading and mapping
the points in each received cloud. The requirements of the confidence-enhancing node
is clearly dependent on how many instants of Algorithm 1 are sending moving object
information to it, and on how many objects each source has found. In our experiments,
the requirements have thus shown to be very low while successfully handling the two
incoming message streams. There is also a risk of the confidence-enhancing node
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becoming a bottleneck, due to the architecture of the system (cf. Fig. 5). For our setup,
the experiments show that this is not the case, however.

The third measured quantity is the output (MovingObjectArray) message rates.
For the LaserScan-interpreting node, this was about 11 Hz. For the PointCloud2-
interpreting node, this was about 17 Hz. Comparing these rates to the rates of the
incoming messages, it is obvious that the LaserScan-interpreting node seems to be
able to handle the incoming message stream without having to drop any messages. For
the PointCloud2-interpreting node, it seems that a few incoming messages have to
be dropped. This conclusion is rather vague, however, because of the constantly (to a
small extent) varying message rates. For the confidence-enhancing node, the rate of the
outgoing message stream seemed to be equal to the total rate of the incoming messages.
Thus, it seems like the confidence-enhancing node was able to handle the incoming
message streams without having to drop any messages.

(a) Toward. (b) Away from.

Fig. 7. Object moving toward and away from the sensors.

(a) Meeting. (b) Overtaking.

Fig. 8. Object meeting and overtaking the sensors on their left.
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The fourth measured quality is how well the system is able to correctly calculate the
position and velocity of objects moving in different directions, relative the sensors. The
results of the position and velocity calculations (arrows; as discussed in Sect. 4), along
with the width of the detected object (green/gray lines), are visualized in Figs. 7–15 for
an occurrence within the following cases. Note that the point cloud sometimes covers
(parts of) the arrows and lines in the figures. For clarity, only the output of the sensor-
interpreting nodes is shown in the figures. For the first five cases, the sensors remain in
a static position (i.e. do not move).

The first case is when the object is moving toward/away from the sensors along their
depth-viewing axes (Fig. 7), and the second case is when the object ismeeting/overtaking
the sensors on one side (Fig. 8).

The third case is when the object is moving across the field of view of the sensors
(Figs. 9–12). This case poses a challenge, because the object is moving across the
sensors’/banks’ scan rays, not along them, which makes tracking the object from the
newest scan in the bank to the oldest more difficult. When the object is crossing the
field of view of the sensors at a distance of 1 m with a speed of 2 m s−1, the system
mostly fails to correctly calculate its position and velocity. For speeds around 1 m s−1,
the PointCloud2-interpreting node successfully calculates the position and velocity
at a distance of 1 m, though (cf. Fig. 9). For speeds around 0.5 m s−1 and below, both
interpreting nodes successfully calculate the position and velocity at a distance of 1 m.
When the object is crossing the field of view of the sensors at a distance of 2–4 m with a
speed of 2 m s−1, the PointCloud2-interpreting node is able to derive the position and
velocity of the object, while the LaserScan-interpreting node mostly fails to do so. For
speeds around 1 m s−1 and below and at distances of 2–4 m, the LaserScan-interpreting
node is able to successfully calculate the position and velocity of the object, though.
Thus, we have established somewhat of a soft limit for at what distances and speeds
the sensor interpreters fail to correctly calculate the position and speeds of the object
because the rate at which the sensor produces scans is too low.

The fourth case is when the object is moving diagonally across the field of view of
the sensors (Fig. 13), while the fifth case is when the object is moving in an arc in front
of the sensors (Fig. 14).

The sixth case is when the sensors are moving forward while the object is moving
perpendicularly across their path (Fig. 15).

All cases (except for thementioned exceptions) showgood accuracy in the calculation
of the position and velocity of the object, and the rates of the MovingObjectArray
output message streams are very stable.

The fifth measured quality is how well instantaneous changes in how the object
moves (e.g. rapidly stopping/starting or changing direction) are interpreted. Both the
LaserScan- and PointCloud2-interpreting nodes handle the instantaneous changes
very well when the object is moving at speeds up to about 1 m s−1. For speeds higher
than this, the interpretation of the instantaneous changes becomes more difficult, but
the result can still be seen as quite satisfactory. The best result was achieved for speeds
between 0.5 and 1 m s−1. The confidence-enhancing node could successfully handle its
two incoming data streams very well for all speeds and movement patterns.
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Fig. 9. Object crossing the sensors’ field of view with a speed of 1 m s−1 at a distance of 1 m.

(a) Crossing with a speed of 0.5 m s−1. (b) Crossing with a speed of 2 m s−1.

Fig. 10. Object crossing the field of view of the sensors at a distance of 2 m.



Detecting Moving Objects and Deriving Their Positions and Velocities 15

(a) Crossing with a speed of 0.5 m s−1. (b) Crossing with a speed of 2 m s−1.

Fig. 11. Object crossing the field of view of the sensors at a distance of 3 m.

(a) Crossing with a speed of 0.5 m s−1. (b) Crossing with a speed of 2 m s−1.

Fig. 12. Object crossing the field of view of the sensors at a distance of 4 m.

(a) 30◦. (b) 60◦.

Fig. 13. Object moving diagonally across the field of view of the sensors.
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(a) First position. (b) Second position

Fig. 14. Object moving in a convex arc in front of the sensors.

Fig. 15. Sensors moving forward at 0.5 m s−1 and object crossing their path at 1 m s−1.
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The overall results are hence: good accuracy in the position and velocity calculations
for reasonable object speeds at reasonable object distances; small memory footprints;
and low CPU usage requirements for the implementations of Algorithms 1 and 2.

7 Related Work

To the best of the author’s knowledge, there is no other work trying to achieve the
exact same results as those presented herein. However, this work has some similar-
ities to work on localization and map building [8,12,17] (e.g. simultaneous local-
ization and mapping—SLAM [7,9,17]) and on detecting and tracking moving ob-
jects [14,16,19,21,23,25,26].

Many localization and map-building solutions rely on feature-to-feature, point-to-
feature or point-to-point matching techniques for determining changes in consecutive
environment scans. Our method could be said to rely on a very simple feature-to-feature,
or rather segment-to-segment, technique for tracking an object through the bank. The
flat structure of the bank, only consisting of range readings at known directions, makes
our solution quite effective and efficient.

We do not focus on tracking the detectedmoving objects in the environment, but only
provide an instantaneous view of the surroundings. One could argue that the tracking
instead will be done “automatically” by the navigation systemwhen fed with information
by our system. Likemost approaches to tracking objects [26], our approachworks the best
for rather smooth motions of the objects in the environment (i.e. an object is assumed not
to move too far between two consecutive sensor readings). Some techniques (applicable
to for example street surveillance applications) rely on a static sensor with a known
default/background image input, then the deviations from this known default image and
the current input image represent objects.

We use partly the same strategies as those presented by Diosi and Kleeman in
2007 [8] where they try to estimate the motion of a laser range scanner using its range
readings (thus, they are primarily targeting localization/odometry- and mapping-related
problems but the technique could also be applied for tracking moving objects). Like
Diosi and Kleeman, we too work in a polar coordinate system and two consecutive scan
points are considered to belong to the same object if their ranges do not differ more than
a specific threshold value. However, we do not group points whose ranges differ more
than this threshold, but which lie on a straight line, into objects. The latter grouping of
scan points is a very effective strategy when trying to detect walls [8] and other large
plane-shaped surfaces. We do not specialize on detecting walls, however, but try to be
quite general in our object detection and focus on moving objects. Therefore, we do not
include such a specialized condition.

8 Discussion, Conclusions & Future Work

In this paper, we have presented an efficient and effective method for detecting moving
objects and deriving their positions and velocities, based on 2D polar range scans of the
environment. The method has been implemented as a C++ ROS library along with two
executable nodes using the library/method. One of the nodes takes a (2D) LaserScan [2]
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message stream as input, while the other node takes a (3D) PointCloud2 [5] message
stream as input. Thus, great flexibility in which type of sensor can be used to feed our
method with a data stream is provided.

We have also provided a very efficient method for increasing the confidence value
for objects which are seen/detected by several sensors. Note that this method can be used
to easily perform sensor fusion with the goal of providing information about moving
objects (since this method only relies on the output of the first method, and the first
method can be applied to a great variety of sensor types).

In this paper, the presented methods were evaluated using a 360◦ LIDAR from
Slamtec (RPLIDAR A2M8) [6] and a depth camera from Intel (RealSense D435) [1]. It
was found that the simplicity of our approaches resulted in good accuracy in the position
and velocity calculations for reasonable object speeds at reasonable object distances,
and small memory footprints and low CPU usage requirements for the implementations
of the presented methods.

The complexity of Algorithm 1 is dependent on the number of messages that are
stored in the bank, m, and on the size of each such message, n. The complexity of
caching the range values of an incoming message, and performing EMA on them, is
O(n). The object detection (rows 11–34) loops through the range values of the newly
arrived message only once. Thus, the object detection complexity is O(n). Tracking a
detected object through the messages in the bank (row 37) is of O(mn) in the worst
case (i.e. when all scan points constitute the object in all cached messages). The rest
of the operations are of constant complexity. Thus, the total complexity is O(mn2) in
the worst case. However, setting the thresholds used by the algorithm appropriately will
drastically reduce this worst-case complexity, like our evaluation experiments show.

The complexity of Algorithm 2 is dependent on the number of sources, s, and on
the number of objects detected by each source, which is ni , where i ∈ {1, . . . , s}, in
the worst case. When receiving a message from source i, each of its detected objects
is compared to each object detected by all other sources. Thus, the complexity is
O(ni

∏
j∈{1,...,s}\{i } nj) = O(

∏s
j=1 nj) in the worst case. For our evaluation setup, the

worst-case complexity is hence O(n1n2). Again, setting the thresholds used by the
algorithms appropriately will drastically reduce this worst-case complexity, since then
it will not be that each scan point for each source represents an object. This is evident in
our evaluation experiments.

We consider making parallel implementations of some strategically chosen parts of
the algorithms and compare their performance to the sequential versions presented in
this paper. It should be noted that there are several pitfalls to consider, though. Since the
number of scan points, n, in an incoming polar scan message is typically quite small,
it is expected that the overhead from using several threads might not be covered by
the parallel computations. It should be noted that detecting objects and tracking them
through the bank are inherently sequential operations in our approach. The detection
could be done in parallel by several threads, but that would require special handling of
the threads’ respective search boundaries. This approach is not expected to out-perform
the sequential approach for realistic values of n. The objects could be tracked through
the bank in parallel if changing the structure of the algorithm to first identify all objects
in an incoming message and then tracking them as a subsequent operation.
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Since the number of scan points might be too small for an efficient parallel im-
plementation of Algorithm 1, it should also be that the number of found objects in an
incoming msgMOA to the confidence-enhancing node is too small as well. In case we
have a very large number of sources, though, then it might be efficient to compare an
incoming message to the cached messages in parallel.
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