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Abstract— The division of floor plans or navigation maps
into single rooms or similarly meaningful semantic units is
central to numerous tasks in robotics such as topological map-
ping, semantic mapping, place categorization, human-robot-
interaction, or automatized professional cleaning. Although
many map partitioning algorithms have been proposed for var-
ious applications there is a lack of comparative studies on these
different algorithms. This paper surveys the literature on room
segmentation and provides four publicly available implementa-
tions of popular methods, which target the semantic mapping
domain and are tuned to yield segmentations into complete
rooms. In an attempt to provide new users of such technologies
guidance in the choice of map segmentation algorithm, those
methods are compared qualitatively and quantitatively using
several criteria. The evaluation is based on a novel compilation
of 20 challenging floor plans.

I. INTRODUCTION

The segmentation of grid maps into semantically meaning-
ful regions is an important task for many applications with
mobile robots. For instance, the computation of appropriate
topological maps yields significant savings in computational
efforts for obtaining navigation trajectories [1]. The proper
division of floor plans into individual room units can be a
valuable part of semantic mapping [2] or the categorization
of places [3]. Likewise, human-robot communication greatly
benefits from a common notion about the extent of rooms
[4]–[7]. Besides the aforementioned application cases the
work in this paper was also motivated by our previous work
on professional office cleaning robots [8]. Such a cleaning
robot shall autonomously clean the floor in each office and
clear the trash. It is desirable if the cleaning robot only needs
a floor plan to conduct its work. The plan must be segmented
into single rooms or work units autonomously by the robot
to generate an efficient navigation sequence throughout the
building. Fig. 1 provides an example for this application case.

According to the variety of applications numerous ap-
proaches to obtain an appropriate floor map partition have
been proposed. Literature mainly distinguishes between fully
automatic map segmentation, e.g. [1], [2], [9], and interactive
segmentation incorporating the commands of a human, e.g.
[4]–[7]. Also, there is a difference between methods oper-
ating on previously recorded maps [1], [10]–[13], and such
computing a space partition online during the construction of
a map [7], [14], [15]. Finally, map segmentation algorithms
may be distinguished by their underlying approach, e.g.
Voronoi graph based segmentation [1], [11], [15], graph
partitioning [14], [16], feature-based segmentation [2], [12],

1 The authors are with the Robot and Assistive Systems
Department, Fraunhofer IPA, 70569 Stuttgart, Germany.
<first name>.<last name>@ipa.fraunhofer.de

Fig. 1. An office cleaning robot utilizes a map segmentation to visit all
rooms in an optimal order.

[13], [17], [18], morphological segmentation [9], [10], dis-
tance transform-based segmentation [4], or the interpretation
of architectural floor plans [19]–[21].

Although, autonomous and semi-autonomous map parti-
tioning have quite some importance for several robotics tech-
nologies and applications, there is a limited body of compara-
tive literature assessing the different approaches. Most papers
just evaluate their own proposed method for a very specific
purpose. Some papers solely evaluate by showing success
on a couple of exemplary maps, while others also compute
some numerical performance measures, however, these often
apply a very task-specific measure of success. Comparisons
to alternative map segmentation algorithms are scarce, a
notable exception is e.g. [17]. Likewise, publicly available
implementations are hard to find. This paper provides an
overview over different types of room partitioning methods,
describes our publicly available open source implementation
of four popular map segmentation algorithms, and yields
a thorough comparison of those methods based on various
numerical and qualitative criteria. The evaluation utilizes a
diverse compilation of publicly available maps and further
maps contributed by the authors.

Summarized, the main contributions of this paper are:

1) a survey on the various kinds of room segmentation
approaches,

2) a publicly available open source implementation of
different room segmentation algorithms,

3) a thorough evaluation and comparison between those
approaches, and

4) a set of 20 floor maps and gazebo simulation environ-
ments of diverse kinds of office environments.



The remainder of this paper is structured as follows. Sec. II
briefly discusses the variety of approaches to floor plan
segmentation, followed by a description of the implemented
algorithms in Sec. III. Subsequently, Sec. IV is dedicated to
the experimental evaluation of the considered methods before
we conclude in Sec. V.

II. SURVEY: ROOM SEGMENTATION APPROACHES

The most popular approaches to segment floor plans base
upon generalized Voronoi graphs. Voronoi graphs are spatial
partitions of a map whose nodes and edges have a maximal
distance to at least two points of a finite set of obstacle
points in the map (see Fig. 4, upper left image). Methods
for the computation of (generalized) Voronoi graphs on grid
maps are described in [22]–[27]. Thrun and Bücken [1],
[28] utilize Voronoi graphs in order to find critical points
on them which lie closer to two obstacle points than all
other neighboring points of the Voronoi graph. Critical points
hence represent narrow passages such as doors. The open
space is intersected at each critical point yielding many small
segments that finally become merged with their neighboring
segments according to several heuristics. That algorithm
creates a topological map with map cells that represent
simple rooms or parts of rooms. It is intended to speed
up navigation planning. In a similar way, this algorithm
is applied to incremental, multi-robot mapping and map
segmentation in [15] with some optimizations for selecting
the critical points only at real doors. A significant extension
of the basic Voronoi segmentation is introduced by Beeson
et al. [11] who employ an extended Voronoi graph, which
remains closer to walls in large areas, for the use with robots
that have limited sensing range. They also define an ample
set of heuristics for the detection of place changes through
gateways.

Zivkovic et al. [16] apply graph partitioning to retrieve
a hierarchy of topological maps that can be used with a
hierarchical path planning method. They consider a basic
navigation graph of approachable areas and connections be-
tween them and simplify this graph with a graph cut criterion
or with spectral clustering [29]. The resulting map partitions
are similar to those of Voronoi segmentation. Brunskill et
al. [14] propose a system for incremental online generation
of topological maps and compute the graph partitioning
with spectral clustering. Additionally, AdaBoost classifiers
on simple laser scanner features, similar to [2], are trained
for learning the appearance of submaps for loop-closure
detection.

The latter idea leads to the group of feature-based room
segmentation algorithms that usually rely on learning grid
cell labels from local appearance and harmonizing neigh-
boring labels afterwards. Martinez Mozos et al. [2], [30]
propose to provide an AdaBoost classifier with a large
set of simple features computed directly on laser scanner
measurements to learn the respective place label, e.g. room,
hallway, or door. The place labels can then be smoothed
along a robot trajectory with a hidden Markov model or
within the whole map using associative Markov networks.

Friedman et al. [17] connect the feature-based approach of
Mozos et al. [2] with Voronoi segmentation by setting up
a conditional random field on top of the Voronoi nodes to
represent different types of rooms, e.g. room, hallway, door,
crossing. Place types are learned with AdaBoost applied
to features from both the map and the Voronoi topology,
e.g. distance to obstacles or number of neighbors in the
Voronoi graph. The resulting map partitions are less noisy
than those in [2]. The map partitioning system of Ekvall et al.
[12] attempts to separate rooms by learning the appearance
of doors or narrow passages by means of line, point, and
SIFT features. More complex geometric shapes, e.g. sets
of (rotated) rectangles, are used to simplify a given map
within the approach of Oberländer et al. [18] and capture
regular room structures like offices and hallways. The fitted
shapes are linked amongst each other to yield a topological
map. In addition, the room type (office or hallway) can be
derived from laser scanner features. Sjöö [13] describes an
algorithm that assigns functional labels to a map with already
determined smaller regions. Labels such as room, corridor,
kitchen, office, or entrance are optimized for these regions
via energy maximization. This procedure may be applied
to improve an existing partition with higher level semantic
information.

Morphological operators have been applied to room par-
titioning by Fabrizi, Buschka, and Saffiotti [9], [10]. They
set up a fuzzy grid map that represents the certainty of cell
occupancy by obstacles. The fuzzy-morphological opening
operator is then applied to the fuzzy grid map to split areas
apart that are only connected through narrow passages like
doors. Starting at a seed point inside each area, the watershed
algorithm determines which pixels belong to the same room.

Diosi et al. [4] describe a semi-autonomous map seg-
mentation based on the distance transform. The robot is
supposed to follow the user who utters place labels at
different locations. After completion of the mapping the
distance transform is used to group map cells to rooms and
connect them with the closest label. The distance transform
generates local maxima and all pixels that move to a common
local maximum during gradient ascent are said to belong
to one room. Another application of an interactive room
segmentation method can be found in Spexard et al. [5],
who developed a personal care robot that is able to learn
the location and extent of functional places or rooms in
homes. Topp and Christensen [6] describe a system that
models indoor areas based on feature representations and
which can incorporate place transitions without explicit door
or passage indicators. A semantic place labeling application
using a mixture of Gaussians model is proposed by Nieto-
Granda et al. [7]. Besides assigning soft labels to locations
it is capable of asking the user deliberately for the label of
novel places.

Finally, there is a group of methods that interpret archi-
tectural floor plans. Ahmed et al. [19] and Heras et al. [20]
discuss a system that accepts architectural floor plans with
all specific symbols and textual annotations. The method
for dividing the floor map into individual rooms is based



on line detection to find the walls. Gaps that originate
from windows or doors are interpolated. The walls are then
used to construct a grid map. The final room partitioning
follows straightforward from the detection of doors in the
architectural plan. The system is also capable of adding
semantic room names from the plan. Capobianco et al. [21]
discuss a similar system that uses Canny edge detection and
Hough transform to find the walls and divide the floor plan.

This overview on room segmentation methods underlines
that the variety of applications produced a variety of spe-
cialized algorithms. For a practical comparison of different
approaches, this paper analyzes the properties of a Voronoi
graph-based method [1], a morphological segmentation, a
distance transform-based algorithm, as well as a feature-
based room partitioning approach [2] in the following.

III. IMPLEMENTED ROOM SEGMENTATION ALGORITHMS

The following implementations of room segmentation
algorithms assume that a complete grid map of the envi-
ronment is available from the beginning, i.e. these methods
are not optimized for online generation of map partitions.
Nevertheless, the iterative application of those algorithms to
the respective current state of the recorded map is always
possible but may not be computationally the most efficient
solution.

A. Morphological Segmentation

The morphological segmentation is identical with the
procedure described in our previous work [8]. The algorithm
shares some ideas with [10]. Major highlights of the mor-
phological segmentation are the algorithmic simplicity and
high computation speed.

The algorithm works on a grid map M1 whose pixels
are initially labeled accessible at mapped accessible areas
and inaccessible at walls and outer areas. Such a map is
depicted in Fig. 2 in the upper left corner. White areas shall
represent accessibility. The walls of M1 are grown iteratively
by one pixel with the morphological erosion operator. Then
a connected component analysis verifies whether previously
connected accessible areas have become separated by the
erosion (see Fig. 2 upper right image). If a separated region
has a certain size between a lower and higher threshold,
which represent the desired segment size dependent on the
number of erosion steps, all its cells become labeled as an
individual room ri in a second map M2 (see Fig. 2 lower
left image), which is a copy of the original map M1, and
are set inaccessible in map M1. This procedure repeats with
the erosion until all accessible cells have been removed
from map M1. Following, the labeled areas in M2 become
extended into the accessible unlabeled space with wavefront
propagation until all accessible cells have been labeled. The
resulting segmentation is visualized by the lower right image
in Fig. 2.

B. Distance Transform-based Segmentation

The distance transform-based segmentation initially re-
quires a distance transform of the map. A distance transform

Fig. 2. Stages of the morphological segmentation algorithm: (i) initial floor
map, (ii) iteratively eroded map, (iii) initial labeling of separated rooms, and
(iv) segmentation after wavefront propagation.

represents the distance of each accessible (white) pixel to the
closest border pixel (black). Fig. 3 provides an example for a
distance transform (upper left image) on the map of Fig. 2.
The local maxima of the distance transform always lie in
the center of a room. At narrow corridors or doors, the local
maxima are smaller than those inside a large room. Hence, if
the distance transform is thresholded appropriately one can
obtain the centers of rooms (e.g. Fig. 3, upper right image).
Looping through all such possible thresholds t in descending
order delivers a set of room centers C, which first increases
in size until the threshold equals the local maxima at doors.
From that point the number of room centers decreases again
because neighboring room centers become merged through
the door connections. The segmentation algorithm chooses
threshold t∗ in such a way that the number of retrieved
room centers |C| is maximal (see Fig. 3, lower left image).
Eventually, the found room centers are labeled uniquely
and extended into remaining unlabeled space via wavefront
propagation.

Effectively, the distance transform-based segmentation
shares some similarities with the morphological segmenta-
tion and hence the segmentation results are quite similar for
some maps. The computational complexity is comparable to
the morphological segmentation.

C. Voronoi Graph-based Segmentation

The Voronoi graph-based segmentation majorly follows
the original formulation of [1] but replaces the final merging
step by a couple of more intricate heuristics that bias
the procedure towards segmenting complete rooms. First, a
generalized Voronoi graph is computed on the grid map and
pruned to the major skeleton by collapsing leave edges into
the node points of their origin (Fig. 4, upper left image).
Any point on the resulting Voronoi graph, that has exactly
two closest obstacle pixels, is a candidate for becoming a



Fig. 3. Stages of the distance transform-based segmentation algorithm: (i)
distance transform of the floor plan, (ii) set of room centers at a non-optimal
threshold, (iii) room centers at optimal threshold t∗, and (iv) segmentation
after wavefront propagation.

critical point that might delineate two room segments in the
later stages. From the set of possible critical points those are
stored in set P for further consideration which are closest to
their obstacles within a certain neighborhood (Fig. 4, upper
right image). Next, critical lines are drawn into the map
at all critical points of set P . These critical lines connect
the critical points with their two closest obstacle points. The
angle between both line segments is important if there are
too many critical lines within an area. Then those with the
smallest angles are removed since these often lie at corners
of a wall. Critical lines with a large angle occur frequently
at doors. The obtained map division still has too many small
Voronoi cells that need to be merged into larger structures
(Fig. 4, lower left image). Various approaches to the merge
step can be found in literature (see Sec. II). In this work, we
propose the following heuristics for merging Voronoi cells
into room-like structures:

1) Areas smaller than a threshold (12.5m2) with exactly
one neighbor and less than 75% of the border touching
walls (i.e. not a closed room area) become merged with
that neighbor.

2) Small regions below a threshold size (2m2) are merged
with a surrounding area that is in touch with at least
20% of the small region’s border pixels.

3) Merge regions with (i) exactly one neighbor that has
maximal 2 neighbors and with (ii) at least 50% of
the perimeter touching walls (this connects two parts
inside the same room).

4) Merge regions that share a significant part of their
borders, i.e. at least 20% for the smaller room and
10% for the larger room.

5) Merge regions with more than 40% of their perime-
ter touching another segment (this often happens
near/below tables or other ragged obstacles).

Fig. 4. Stages of the Voronoi graph-based segmentation algorithm: (i)
computation of the generalized Voronoi graph, (ii) set of extracted critical
points, (iii) critical lines, and (iv) segmentation after merging Voronoi cells.

Fig. 5. Stages of the feature-based segmentation algorithm: (i) simulated
laser scanner measurement within the map, and (ii) segmentation after
AdaBoost classification.

After applying all merging rules the segmentation illustrated
by the lower right image in Fig. 4 is obtained.

D. Feature-based Segmentation

The feature-based segmentation is implemented as de-
scribed in [2]. We will provide a brief summary of the
method here and refer the interested reader to the original
publication. The basic data used for feature computation are
the simulated rays of a 360◦ laser scanner that is placed at
every accessible pixel of the map (see Fig. 5, left image).
From this laser scan, a set of 33 simple geometric features
such as difference in ray length or average ray length is
computed. Following, the feature vector is classified by an
AdaBoost classifier into room labels like office or corridor.
Finally, all neighboring points with the same label are
merged. Additionally, some smoothing can be applied by
conducting a merge step with an associative Markov network.
In order to obtain good results from the pixel-wise AdaBoost
classification, the AdaBoost classifier needs to be trained first
with sufficient amounts of representative data. This can be a
drawback if new environments shall be segmented which do
not resemble the training data.



IV. EVALUATION

This section applies three measures to compare the de-
scribed map partitioning algorithms in different ways. First, a
set of general and objective numeric properties is determined
for each method, second, the segmentation quality is assessed
against a human labeled segmentation, and third, the partition
is evaluated on the performance of a cleaning robot that has
to visit all rooms sequentially. The third case is a special
application inspired by our previous work on professional
office cleaning robots [8].

A. Dataset

In order to challenge the segmentation algorithms we have
compiled a diverse set of 20 different office floor plans
with ample individual characteristics. These floor plans are
partly taken from or inspired by data publicly available from
the Radish Repository [31] or from the data set of Oscar
Martinez Mozos1. The remainder has been contributed by
the authors based on real and fictional floor plans. All 20
floor plans have been generated with and without furniture
in order to assess the influence of disturbances to the original
architecture. The resolution of all maps was set to 0.05 m
per grid cell. The ground area of the maps ranges from
around 100 m2 up to over 1000 m2. Most of the scenes have
also been modeled for the gazebo simulation environment.
All maps, simulation environments, and the implementations
of the segmentation software can be downloaded from our
website [32].

B. General Numerical Properties

The first comparison of the map segmentation procedures
is based on the following general and objective properties of
the resulting segmentation:

• Algorithm runtime: the runtime of the segmentation
algorithm in seconds (running at one core of a mobile
Intel i7 4800MQ CPU with 2.7 GHz and 16 GB RAM),

• Number of segments: the total number of segments
created by the partition,

• Segment area: the average area Ai of the obtained
segments in m2,

• Segment perimeter: the average perimeter ui of the
obtained segments in m,

• A-Compactness: the average area/perimeter compact-
ness Ai/u

2
i of the obtained segments,

• B-Compactness: the average area/bounding box com-
pactness Ai/Abb,i of the obtained segments,

• Shape: average quotient of eigenvalues ei,1/ei,2 of the
obtained segments.

Segments with a large perimeter and small area are complex
structures with many small facets. This kind of segments
is rather disadvantageous for most applications. The A-
Compactness measure yields a dimensionless measure that
puts segment area and perimeter into relation. The larger
this measure the higher the compactness of the segment. The

1http://webpages.lincoln.ac.uk/omozos/place_data_
sets.html

B-Compactness criterion measures the similarity of the ob-
tained segment to a rectangular area. For the B-Compactness
measure we compute the minimal rotated bounding box
around each segment and divide the segment area Ai by the
bounding box area Abb,i. Again, the room shape resembles a
rectangle the more the higher the B-Compactness. The Shape
property measures the extension of the area by computing the
principal components and their corresponding eigenvalues
ei,1, ei,2 on the set of room cells via PCA. Dividing the larger
by the smaller eigenvalue yields a measure that is close to 1
for quadratic or round shaped rooms and getting larger for
elongated regions.

For comparison, those general properties are reported in
Tab. I for the different segmentation methods averaged over
the whole dataset. It shows that the morphological and
distance transform-based approaches can be computed very
fast in 1-2 s under all circumstances whereas the Voronoi
segmentation takes about 13 s. The feature-based method
consumes over 4 minutes of computation time majorly
caused by the computationally intense sampling of laser
scanner data all over the map. All four algorithms are more
or less speeding up on the furnished maps since the number
of pixels that needs to be processed reduces with clutter.

Morphological and distance transform-based segmentation
behave very similar with respect to number of rooms,
room area, perimeter, shape, and compactness measures.
If furniture is added their compactness measures reduce
significantly while the number of segments increases and
the room area decreases significantly. Obtaining more seg-
ments with smaller area and lower compactness indicates the
instability of these approaches under clutter, which can be
a significant drawback for certain applications. In contrast,
Voronoi segmentation yields more but smaller rooms with
shorter perimeter and higher compactness. Most measures
change less drastically for Voronoi segmentation when fur-
niture is added. The feature-based approach produces an
intermediate number of segments that are larger than those
from the Voronoi segmentation but smaller than those from
morphological and distance transform-based segmentation.
The compactness measures are the lowest because place
labels can change abruptly at the rugged border with this
method. However, there is only little difference between
empty and furnished maps in the number and area of found
rooms, which renders the feature-based segmentation the
most stable method. Please note that compactness always
decreases for the furnished maps because the added clutter
leads to longer segment perimeters and less occupied areas.

C. Quality of Room Segmentation

This part of the evaluation compares the segmentations
of the proposed algorithms with a subjective ground truth
segmentation. A student of our lab was told to label all
maps with a reasonable ground truth segmentation which
basically separates all rooms from each other and from the
corridor as it would be desirable e.g. for semantic mapping.
However, because every application has its own demands, the
reader is encouraged to re-produce the following statistics

http://webpages.lincoln.ac.uk/omozos/place_data_sets.html
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TABLE I
AVERAGED GENERAL PROPERTIES (± STANDARD DEVIATION) OF THE SEGMENTATION METHODS OVER 20 MAPS WITHOUT AND WITH FURNITURE.

morphological distance transform Voronoi feature-based
runtime [s] 1.6 ± 2.6 1.8 ± 2.7 13.0 ± 15.3 269.3 ± 196.7 no furniture

1.1 ± 1.2 1.3 ± 1.4 12.0 ± 14.2 245.0 ± 171.1 furnished
number of segments 22.8 ± 12.3 24.7 ± 11.7 37.9 ± 20.3 32.6 ± 21.1 no furniture

29.5 ± 16.3 38.2 ± 19.9 43.1 ± 24.2 30.6 ± 17.2 furnished
segment area [m2] 47.9 ± 54.0 43.7 ± 31.8 29.0 ± 24.1 36.6 ± 52.9 no furniture

35.6 ± 45.9 27.4 ± 27.8 23.6 ± 21.1 35.8 ± 59.1 furnished
segment perimeter [m] 36.2 ± 36.6 34.2 ± 21.6 22.7 ± 9.5 36.8 ± 57.4 no furniture

46.8 ± 43.0 39.1 ± 27.4 30.9 ± 20.6 48.8 ± 71.2 furnished
A-Compactness 0.043 ± 0.013 0.043 ± 0.013 0.048 ± 0.010 0.037 ± 0.016 no furniture

0.018 ± 0.008 0.019 ± 0.007 0.029 ± 0.014 0.016 ± 0.009 furnished
B-Compactness 0.85 ± 0.14 0.84 ± 0.14 0.90 ± 0.11 0.80 ± 0.21 no furniture

0.76 ± 0.14 0.74 ± 0.13 0.85 ± 0.10 0.72 ± 0.20 furnished
Shape 4.39 ± 8.14 4.35 ± 7.78 5.08 ± 7.72 8.62 ± 20.8 no furniture

4.40 ± 8.00 4.01 ± 6.26 4.44 ± 6.38 8.71 ± 25.3 furnished

TABLE II
AVERAGED RECALL AND PRECISION (± STANDARD DEVIATION) OF THE SEGMENTATION METHODS OVER 20 MAPS WITHOUT AND WITH FURNITURE.

morph distance Voronoi feature-based
no furniture recall 98.1%± 2.4% 96.9%± 2.8% 95.0%± 2.3% 89.2%± 11.8%

precision 88.5%± 9.2% 88.4%± 9.3% 94.8%± 5.0% 90.4%± 8.0%
furnished recall 84.6%± 7.2% 76.1%± 12.3% 86.6%± 5.2% 85.1%± 7.2%

precision 90.5%± 8.1% 88.4%± 8.5% 94.5%± 5.1% 87.1%± 14.5%

given an own ground truth segmentation with the software
provided by the authors [32]. Fig. 6 provides a selection
of exemplary room partitioning results and the ground truth
labels. A complete listing of segmentation results for each
method and each map can be reviewed online [32] as well.

It becomes evident that the morphological and distance
transform-based segmentations tend to grow into the corridor
under certain circumstances and then become connected
with a larger group of rooms. In other maps, however,
these methods yield perfectly separated rooms and corridors.
Furthermore, the Voronoi graph-based segmentation shows to
be quite accurate with identifying single room segments but
often oversegments corridors into smaller regions. Besides
the expected problems with exceptional building structures
that have not been part of the training set, the feature-based
segmentation exposes another shortcoming at rooms which
are not separated by a corridor but touch directly: these are
always merged because they carry the same semantic label.

A quantitative comparison of the algorithms with respect
to the given ground truth segmentation is summarized in
Tab. II by means of recall and precision. Recall is defined
as the maximum pixel overlap of a ground truth room
with a segmented room divided by the area of the ground
truth room. Recall is high if the ground truth rooms are
fully contained in the found segments. Precision is similarly
defined as the maximum overlapping area of a segmented
room with a ground truth room divided by the area of
the segmented room. Precision is high if the segmented
rooms are fully contained in the ground truth rooms. Only
if both measures are high, the segmentation fits the ground
truth well. On undersegmentation, recall can be high at
low precision, on oversegmentation precision can be high
on low recall. For the more realistic cases with furniture,

the Voronoi segmentation achieves the highest recall and
precision with least deviation throughout the tested maps. I.e.
the Voronoi segmentation approximates the desired ground
truth segmentation best from the tested methods. On maps
without furniture, the highest recall can be obtained with the
morphological segmentation, however, at lower precision.

D. Performance of a Cleaning Robot

As a third evaluation criterion we analyze the influence
of segmentation on the performance of a professional office
cleaning machine. Here we are considering the two-stage
navigation procedure that is described in [8]: having obtained
a room or working unit partition, the robot needs to plan
its optimal traveling sequence to these rooms for cleaning
the floor and for clearing trash bins. The robot also carries
along a tool trolley with a waste collection bag for the
trash. It is necessary to determine several central locations
to place the tool trolley, which is needed in the vicinity
of the rooms the robot will work at next. Moving the tool
trolley, however, consumes additional handling time (90 s
on average) and moving with the trolley is one third slower
than the normal robot speed, so that the trolley movements
should be limited. Having computed a set of trolley positions,
the robot visits the neighboring rooms in an optimal order.
The whole cleaning process has been implemented in a
simulation which is used to simulate different parameters
and optimization procedures.

Specifically, a minimal set of trolley placement locations
are determined by solving a set cover problem with a greedy
algorithm as described in [8]. The visiting order of the trolley
positions as well as the sequence through the associated
rooms around is solved as a traveling salesman problem
(TSP) each time. We compared a nearest neighbor heuristic
against a genetic solver and the popular Concorde solver



Fig. 6. Exemplary segmentation results: the first column depicts the ground truth room segmentation from human labeling, the second column shows
morphological segmentation, the third column yields the distance-based segmentation, column 4 is the Voronoi graph-based segmentation, and column 5
shows the feature-based room segmentation. The segmentation results over the complete data set can be found online [32].

[33]. The maximally allowed driving distance, determined
by an A∗ path planner, between tool trolley and associated
rooms was varied in 2 m steps from 6 m to 20 m. This
length has large impact on the number of trolley positions
and covered rooms by each trolley location. Eventually, we
also experimented with a one-stage sequence planner that
computes a single optimal sequence through all rooms of the
building and pulls the tool trolley to the next room whenever
the maximal driving distance between room and tool trolley
would become exceeded.

Together with the four segmentation algorithms, this setup
yields 192 different configurations of algorithms and parame-
ters. In the respective best configuration, the whole cleaning
procedure takes the following times (averaged over all 20
maps) with the according segmentation methods:

1) morphological: 8173 s

2) distance transform: 8167 s
3) Voronoi graph: 7996 s
4) feature-based: 9026 s

The robot can clean an office environment the fastest when
applying the Voronoi graph-based segmentation, probably
because of its compact clusters. Next comes the morpho-
logical and distance transform-based algorithms which need
almost 3 minutes longer on average. The feature-based
segmentation generates the longest driving time with over
16 minutes more on average.

V. CONCLUSION

This paper has reviewed the literature on room segmenta-
tion. Biased by the goal to segment complete rooms instead
of smaller regions, we have selected four algorithms that have
been implemented as a publicly available ROS package [32].



The comparison of these algorithms with respect to several
criteria has shown the advantages and disadvantages of the
single algorithms, and will hopefully provide some useful
guidance when the optimal method for a given application
has to be selected.

As future work the authors will integrate the room segmen-
tation method of Friedman et al. [17] into the ROS package,
which is supposed to combine the advantages of Voronoi-
based segmentation (room-like segments, fast computation)
with feature-based partitioning (stability, automatic learning).
We expect that tuning Voronoi-cell merging heuristics, as
done in this work, can be avoided by having the algorithm
learn from a set of desired segmentation results.
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