
On the Efficient Synthesis of Deliberation and Reaction

Paper #28

Abstract

We introduce a formal framework for flexibly and efficiently
synthesizing deliberation and reaction in a novel variation of
the Sense-Plan-Act paradigm. The framework is based on
partitioning the agent control structure into a collection of
coordinated control loops and decoupling deliberation over
goals from synchronization of agent state. We present al-
gorithms for integrated agent control within this partitioned
structure. Synchronization is a polynomial time multiple of
the cost of primitive operations on a plan. We provide analyt-
ical and empirical results to support this complexity claim.

Introduction
Integrating deliberation and reaction has been a persistent
challenge in the design of autonomous systems. The Sense-
Plan-Act (SPA) paradigm for robot control embeds planning
at the core of a control loop. Planning is typically the dom-
inant cost and can limit the reactivity of an agent. Further-
more, the world can (and often does) change at a faster rate
than the planner can plan. In this situation, the agent may
thrash if the internal state of the plan gets out of synch with
the actual state of the world. So, while SPA offers a general
representational and computational framework for control,
it is problematic for application in systems that require ex-
tensive deliberation and fast reaction.

The most common approach to resolve this dichotomy is
the Three-layered architecture, e.g. The Remote Agent Ex-
periment (?; ?), ASE (?) and the LAAS architecture (?).
These architectures employ heterogeneous representational
and computational frameworks for deliberation and reaction.
This approach is problematic in terms of integration and
validation (?), motivating the introduction of unified frame-
works like IDEA (?).

The contribution of this paper is to define a formal frame-
work to partition the control responsibilities of an agent ac-
cording to how far to look ahead (temporal scope), which
state variables to consider (functional scope) and required
reaction time (latency). Each partition is a control loop with
its own internal SPA cycle, distinguished explicitly by these
parameters with the agent as a whole employing a unified
representational and computational model.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although partitioning can be a powerful tool to reduce
planning complexity it is unreasonable to require all plan-
ning to complete at the rate at which the environment is
changing. Rather, planning within each control loop must
be completed at the rate at which it must react to provide
effective control. In order to allow a uniform quantization
of time throughout the model, yet permit different rates of
reaction for different control loops, it becomes necessary to
allow sensing and planning to be interleaved. This allows
multiple state updates to occur during deliberation, keeping
the plan in synch with an evolving world state. To support
this we decouple synchronization of the plan from delibera-
tion over goals and allow them to be interleaved.

Within this framework, we present algorithms for inte-
grating agent control and synchronizing agent state. Syn-
chronization is a polynomial time multiple of the cost of
primitive operations on a plan. We provide analytical and
empirical results to support this complexity claim.

The paper is structured as follows. We begin with key
definitions and concepts and then describe the partitioned
agent structure and integrated control loop. We follow with
a presentation of the synchronization problem in detail with
algorithms for its solution. Results for experiments in simu-
lation and in a real world environment are then described. A
discussion and conclusions section terminates the paper.

Key Concepts & Definitions
The world, W , contains a set of state variables, Sw. An
agent, situated in a worldW , is defined by:
• A set of state variables: S ⊆ Sw = {s1, . . . , sn}.
• A set of reactors: R = {r1, . . . , rn}. Each reactor man-

ages a component of the agent control problem to accom-
plish goals while observing the evolution of the world.

• A lifetime: H = [0,Π) defining the interval of time in
which the agent will be active. H ⊆ N.

• The execution frontier: τ ∈ H is the elapsed execution
time as perceived by the agent. This value increases as
time advances inW . The unit of time is called a tick.
During its lifetime an agent observes the evolution of the

world through S as the execution frontier advances. R pro-
vides the capabilities required to project the world evolution,
and perform actions to alter world state.

Our agent design is based on timeline representations.
Timelines are used to represent the evolution of the state



variables from S and can be used as a representation for
planning and execution control (?).

Definition 1 A timeline, L, is defined by:

• a state variable: s(L) ∈ S.
• a set of tokens assigned to this timeline: T (L). Each

token t ∈ T (L) expresses a constraint on the value
of s over some temporal extent. A token is given by
p(start, end,−→x ) with:
– a start variable of domain N.
– an end variable of domain N. The token holds for all

ticks in [start, end).
– p a predicate identifier
– −→x a vector of the token parameters domains.

• an ordered set Q(L) ⊆ T (L) of tokens. This set include
tokens of T (L) that are temporally ordered.

We use the notation, L(t) to refer to the set of the tokens
ordered in the timeline L that overlaps time t:

L(t) = {a; a ∈ Q(L) ∧ a.start ≤ t < a.end} (1)

Elements of L(t) are ordered to reflect their relative position
in Q(L).

Partitioning
Partitioning exploits a divide-and-conquer principle by
defining an agent as a composition of coordinated con-
trollers. An agent is partitioned if it has more than one reac-
tor. Reactors can deliberate and react at different rates, over
different time horizons, and on different state variables. The
agent coordinates the execution of reactors within a global
control loop based on the SPA paradigm. The foundation
for coordination is an information model that specifies a di-
vision of authority for determining the value for each state
variable modeled in the agent over a designated temporal
scope.

The Agent Information Model
Reactors may own or use one or more state variables. If a
reactor owns a state variable it has the unique authority to
determine the value for that state variable as execution pro-
ceeds. Every state variable has exactly one owner reactor:

∀s ∈ S,∃r1 ∈ R,∀r2 ∈ R :
owns(r1, s) ∧ owns(r2, s)⇒ r2 = r1 (2)

A reactor uses a state variable owned by another if it re-
quires notification of changes (called observations) as they
happen or if it requests values for a state variable to take on
in the future (called goals). Intuitively:

∀r1, r2 ∈ R,∀s ∈ S :
uses(r1, s) ∧ owns(r2, s)⇒ r1 6= r2 (3)

A state variable owned by a reactor may be functionally
dependent on a state variable it uses. Such a dependency oc-
curs, for example, where one state variable is an abstraction
of another. For such cases, we define a dependency relation
� as follows:

∀r1, r2 ∈ R :(
∃s ∈ S; uses(r1, s) ∧ owns(r2, s)

)
⇒ r1 � r2 (4)

(∃r3 ∈ R; r1 � r3 ∧ r3 � r2)⇒ r1 � r2 (5)

Definition 2 A reactor r is a controller defined by:
• a latency: λr is the maximum amount of time the reactor
r can use for deliberation.

• a look-ahead: πr ≤ Π defines the temporal duration over
which reactor r deliberates. When deliberation starts for
reactor r, its planning horizon is:

hr = [τ + λr, τ + λr + πr) (6)

with πr ≥ λr
• a set of internal timelines: Ir = {I1, . . . , Ik}. Timelines

in Ir refer to state variables reactor r owns:

∀I ∈ Ir : owns(r, s(I)) (7)

• a set of external timelines: Er = {E1, . . . , El}. Time-
lines in Er refer to state variables reactor r uses:

∀E ∈ Er : uses(r, s(E)) (8)

• a set of goal tokens: Gr. Goal tokens express constraints
on the future values of a state variable:

∀g ∈ Gr,∃L ∈ Ir ∪ Er : g ∈ T (L) ∧ g. start ≥ τ (9)

• a set of observation tokens: Or. Observation tokens
express actual values of a state variable:

∀o ∈ Or,∃E ∈ Er : o ∈ T (E) ∧ o. start ≤ τ (10)
∀o ∈ Or,∃r2 ∈ R,∃I ∈ Ir2 : I(o. start) = o (11)

• a model: Mr. The model defines the rules governing the
interactions between values on and across timelines.

To know all the external timelines on an agent that are
referring to a given state variable s, we define the operator
ε(s) such as :

ε(s) = {E : E ∈ ∪r∈REr, s(E) = s} (12)

We consider a special set of reactors,Rw, which are prim-
itive in that they have no dependencies:

∀r ∈ R : Er = ∅ ⇒ r ∈ Rw (13)

In practice, such primitive reactors encapsulate the exoge-
nous state variables of the agent. We further define the
model for the agent,Mw, as the union of all models of each
individual reactor:

Mw =
⋃
r∈R
Mr (14)

The Agent Control Loop
The uses and owns relations provide the necessary details to
direct the flow of information between reactors. Informally,
observations flow from each reactor that owns a state vari-
able to all reactors that use it. This occurs during a process
called synchronization. Goals flow from reactors that use a
state variable to the reactor that owns it. This occurs through



a process called dispatching. Deliberation is the process of
planning an evolution of state variables from current values
to requested values. Synchronization, deliberation and dis-
patching are steps of the core agent control loop. The agent
executes the set of reactors, R, concurrently. Execution of
the loop occurs once per tick. Each step begins at the start of
a tick by dispatching goals from users to owners. The agent
then synchronizes state across all reactors inR at the execu-
tion frontier, τ . If there is deliberation to be done, the agent
will do so in atomic steps until the clock transitions to the
next tick, or deliberation completes. Thus, deliberation can
be pre-empted by a clock transition. Algorithm 1 shows the
top level agent control loop.

Algorithm 1 The agent control loop

RUN(R, τ,Π)
// If the mission is over, quit

1 if τ ≥ Π then return ;
// Dispatch goals for all reactors for this tick

2 DISPATCH(R, τ);
// Synchronize. If no reactor left afterwards, quit

3 R′ ← SYNCHRONIZEAGENT(R, τ); // Alg. 2
4 ifR′ = ∅ then return ;

// Deliberate in steps until done or the clock transition
5 δ ← τ + 1;
6 done ← ⊥;
7 while δ > τ ∧ ¬ done
8 do done ← DELIBERATE(R′, τ);

// Idle till the clock transitions
9 while δ > τ do SLEEP;

// Tail recursive, with possibly reduced reactor set
10 RUN(R′, τ,Π);

Note that τ is incremented independantly of the algo-
rithm.

Synchronization
Synchronization occurs at τ and ensures a complete and con-
sistent view of agent state at the execution frontier. In a
partitioned control structure, opportunities for inconsistency
exist since each reactor has its own representation for the
values of a state variable. While we allow divergent views
of future values of a timeline to persist, we require that all
timelines converge at the execution frontier. For an agent to
be complete, agent state variables must have a valid value at
τ . It is the responsibility of the owner reactor to determine
this value during synchronization and the responsibility of
users of that state variable to reconcile their internal state
with this observation. This explicit ownership specification
resolves conflicts.

Requirements
The concept of a flaw as described in (?) is central to the def-
inition of synchronization. Fundamentally a flaw is a poten-
tial inconsistency that must be resolved. We are concerned
with flaws that may render the state of the reactor incon-
sistent at the execution frontier. More specifically, we are

concerned with any token, t, that necessarily impacts any
timeline L of a reactor r at the execution frontier τ which
has not been inserted in Q(L). Formally a flaw is a tuple
f = (t, L) that is resolved by insertion in Q(L).
Definition 3 A reactor r is synchronized for τ , denoted
s(r, τ), when the following conditions are satisfied:
• All flaws are resolved at τ when

Fτ (r) = ∅ (15)
where Fτ (r) returns an arbitrarily ordered set of flaws of
a reactor for synchronization at the execution frontier. A
formal definition of Fτ (r) follows in Equation (29).

• All internal and external timelines have a unique valid
value at τ , i.e there are no “holes” or conflicts in the time-
line:

∀L ∈ (Ir ∪ Er),∃o ∈ T (L) : L(τ) = {o} (16)
• All external timelines have the same value as the corre-

sponding internal timeline of the owner reactor at τ :
∀L ∈ Er,∃r2 ∈ R,∃I ∈ Ir2 :

s(I) = s(L) ∧ I(τ) = L(τ) (17)
The synchronization of the agent is simply expressed as

the synchronization of its reactors:
∀r ∈ R : s(r, τ) (18)

Assumptions
While synchronization can be formulated and solved as a
distributed planning problem over a narrow temporal scope,
we use the following set of assumptions to reduce syn-
chronization complexity to polynomial time. Our approach
builds on the semantics of the partitioned structure to enable
synchronization of the agent via incremental local synchro-
nization of each reactor.

The Monotonicity Assumption (MA) From the perspec-
tive of a reactor, observations are taken as facts that are
exogenous and monotonic: once an observation is pub-
lished/received, it cannot be retracted. This implies that ob-
servations should not be published by a reactor until it has
been synchronized:

∀r ∈ R,∀o ∈ Or, o.start = τ :
∃r1 ∈ R, owns(r1, s(o))∧ (19)
s(r1, τ) (20)

The Inertial Value Assumption (IVA) The last observa-
tion made on an external timeline is valid until a new obser-
vation is received. The implication is that once a reactor has
received all the observations for its external timelines at τ ,
then:

∀r ∈ R,∀E ∈ Er :
∃o ∈ Or : o.start = τ ⇒ E(τ) = o (21)
@o ∈ Or : o.start = τ ⇒ E(τ).end > τ (22)

Notice that the above equation ensures that all values of an
external timeline contain an observation up till τ . Conse-
quently we require an initial observation at τ = 0. In the
case of internal timelines, the modelMw must specify the
value to assign in all cases. A corollary of the MA is that the
IVA should not be applied for a reactor r1 until:

∀r2 ∈ R, r1 � r2 : s(r2, τ) (23)



The Acyclic Dependency Assumption (ADA) In princi-
ple, two reactors could be interdependent, where each uses
and owns state variables of the other. Were this the case,
synchronization could require iteration over the reactors un-
til quiescence. To avoid this, we assume the reactor depen-
dency graph is acyclic:

∀r1, r2 ∈ R : r1 � r2 ⇒ ¬(r2 � r1) (24)

Consequently, all reactors are distributed across a directed
acyclic graph (DAG) where the root nodes are the reactors
of RW . The imposition of a DAG allows us to assume the
existence of an operator R[i] with i ∈ N that accesses all
elements inR such that:

∀R[i], R[j] ∈ R :
R[i] �R[j]⇒ i > j (25)
R[i] = R[j]⇒ i = j (26)

Together, the MA, IVA and ADA break down the prob-
lem of synchronization of an entire agent to the incremental
process of synchronizing each reactor.

Synchronizing the Agent
Algorithm 2 shows how the agent is synchronized and is ac-
complished by synchronizing each reactor in the order de-
fined by R[i]. It is possible that a reactor may fail to syn-
chronize. Such a failure implies that no consistent and com-
plete assignment of values was possible for its timelines,
and usually indicates an error in the domain model. Un-
der these conditions, the agent must remove the reactor as
well as all its dependents from the control structure in order
to satisfy the requirements for consistent and complete state.
This failure mode offers the potential for graceful degrada-
tion in agent performance with the possibility of continued
operation of reactors implementing safety behaviors.

Algorithm 2 Global agent synchronization

SYNCHRONIZEAGENT(R, τ)
1 Rin ← ∅;
2 Rout ← ∅;
3 for i← 1 to SIZE(R)

// Get next reactor on dependency list
4 do r ← R[i];
5 if (∃rout ∈ Rout : r � rout)

∨¬SYNCHRONIZE(r, τ) // Alg. 3
// If r cannot be synchronized exclude it

6 thenRout ← Rout + r;
7 else Rin ← Rin + r;

// Return the reactors that are still valid
8 returnRin;

Synchronizing a Reactor
Algorithm 3 describes synchronization of a reactor based on
a plan representation similar to (?). Synchronization begins
by applying the inertial value assumption to extend the cur-
rent values of external timelines with no new observations
according to Equation 22. If the active planning horizon hr

(Equation 6) contains τ then deliberation has taken longer
than λr and the reactor will be relaxed. Similarly, if there
is no complete and consistent refinement of the set of flaws
at the execution frontier (see Algorithm 5), the reactor will
be relaxed. The relaxation procedure decouples restrictions
imposed by planning from entailments of the model and ex-
ecution state by deleting the plan but retaining observations
and committed values. Goals will then have to be re-planned
in a subsequent deliberation cycle. After relaxation, a sec-
ond attempt is made to complete the execution frontier. If
this fails, synchronization fails and the reactor will be taken
off line by the agent. If this succeeds, the reactor will iterate
over its internal timelines, publishing new values to users.
Finally, at every step of synchronization, a garbage collec-
tion algorithm is executed cleaning out tokens in the past
with no impact to the present or future. Details of garbage
collection and plan relaxation are outside the scope of this
paper.

Algorithm 3 Single reactor synchronization

SYNCHRONIZE(r, τ)
// Apply IVA to extend current observations

1 for each E ∈ Er
2 do if (@o ∈ Or ∩ T (E); o.start = τ)
3 then E(τ).end← E(τ).end ∩ [τ + 1,∞];

// Complete execution frontier
4 if (τ ∈ hr ∨ ¬COMPLETE(r, τ)) // Alg. 5
5 then if (¬RELAX(r, τ) ∧ ¬COMPLETE(r, τ)) // Alg. 5
6 then return ⊥

// Publish new state values to users of internal timelines
7 for each I ∈ Ir
8 do State ← I(τ);
9 if State[0].start = τ

10 then for each E ∈ ε(s(I))
11 do T (E)← T (E) ∪ State;
12 O(E)← O(E) ∪ State;

// Clean out tokens in the past that havve no impact
13 GARBAGECOLLECT(r, τ);
14 return >;

Resolving Flaws at the Execution Frontier We will now
formally define the operator Fτ (used in Definition 3) and
describe its application in Algorithm 4. The components of
this definition are:

• the temporal scope of the execution frontier which we de-
fine to include the current state (i.e. tokens that contain τ )
and the prior state (i.e. tokens that contain τ − 1).

• an operator Fπ which returns the set of flaws for deliber-
ation. Flaws in Fπ should not be in Fτ . The intuition is
to check if a token is a goal, or if it there is a path from
the token to a goal in the causal structure of the plan.

• a unit decision operator U for a flaw, f, that excludes flaws
that can be placed at more than one location around τ in



Q(f.L):

U(f)⇒
(
∀q1, q2 ∈ (f.L(τ − 1) ∪ f.L(τ)) :

(q1 ⊗ f.t) ∧ (q2 ⊗ f.t)⇒ q1 = q2

)
(27)

where ⊗ indicates that two tokens can be merged:

p1(s1, e1,−→x1)⊗ p2(s2, e2,−→x2)⇒
(p1 = p2) ∧ (s1 ∩ s2 6= ∅) ∧ (e1 ∩ e2 6= ∅) ∧
(@x ∈ −→x1 ∩ −→x2;x = ∅) (28)

Definition 4 We can now define the operator Fτ (r), return-
ing an arbitrarily ordered set of flaws, as:

Fτ (r) =
⋃

L∈Er∪Ir


f : f.t ∈ T (f.L), f.t /∈ Q(f.L),

f.t. start ≤ τ ≤ f.t. end ,
f 6∈ Fπ(r),
U(f)


(29)

To insert a flaw, f, if there is a token, q ∈ Q(f.L) for
which q ⊗ f.t then f.t is merged with q. Otherwise it is as-
signed to a new position inQ(f.L). Either operation may be
infeasible which will indicate that no complete and consis-
tent refinement of the current execution frontier is possible.
(?) describes token insertion in a partial plan. Algorithm 4
describes a procedure for flaw resolution, or failing in the
event any one flaw cannot be resolved.

Algorithm 4 Resolve flaws at the execution frontier

RESOLVEFLAWS(r, τ)
1 while (Fτ (r) 6= ∅)
2 do f ← Fτ (r)[0];
3 if ¬insert(f.t,Q(f.L))
4 then return ⊥

// insert modified Fτ . See Eq. (29)
5 return >;

Completion Algorithm 5 utilizes RESOLVEFLAWS to
complete synchronization. It begins by resolving all the
available flaws. Resolution of the set of flaws is a neces-
sary condition for completeness. However, it is not a suf-
ficient condition for two reasons. First, it is possible that
holes may exist in the internal timelines (application of IVA
ensures that all external timelines are complete) that must
be filled. Second, it is possible that the end time for the
current token in an internal timeline I , is an interval. This
must be restricted so that I(τ) returns a singleton after syn-
chronization; see Equation (16). To address this we define
a policy to complete an internal timeline under these condi-
tions. For the first case, MAKEDEFAULTVALUE will gener-
ate a default value according to the model which is inserted
to fill the hole. In the second case, the end time of the current
value will be extended. These modifications may generate
more flaws in turn. For example, tokens previously excluded
from synchronization by U may now become unit decisions.
Furthermore, additional rules in the model may now apply.
Consequently, we invoke RESOLVEFLAWS again.

Algorithm 5 Completion of the execution frontier

COMPLETE(r, τ)
1 if ¬RESOLVEFLAWS(r, τ) // Alg. 4
2 then return ⊥

// Complete Internal Timelines
3 for each I ∈ Ir
4 do v← I(τ);
5 if v = ∅

// Timelines that have no value at τ
// get a predefined default value

6 then INSERT(I, MAKEDEFAULTVALUE(I, µr, τ ));
7 else v[0].end← v[0].end ∩ [τ + 1,∞];
8 return RESOLVEFLAWS(r, τ);

Complexity Analysis
We now consider the complexity of synchronizing an agent.
The key result is that synchronization is a polynomial time
multiple of the cost of primitive operations on a plan.

We assume the following operators are executed in amor-
tized constant time:

• Fτ The operator to obtain the sequence of flaws in the
execution frontier.

• INSERT(L, t) The procedure to insert a token t in timeline
L.

• MAKEDEFAULTVALUE(L, µr, τ ) The procedure to gen-
erate a default token for timeline L.

We further assume:

• GARBAGECOLLECT is linear in the number of tokens in
the past that have not yet been removed.

• RELAX is linear in the number of tokens in all timelines.

• Insertion of a token by merging with an existing token
generates no new flaws.

• The costs of ⊗,∩,∪ as used in synchronization are
bounded and negligible.

Consider the procedure RESOLVEFLAWS. This procedure
is linear in the number of flaws, since for each flaw encoun-
tered, it is resolved by an insertion operation within amor-
tized constant time with no backtracking. Assume a reactor
r has Nr timelines. In the worst case, every timeline in a
reactor will require a new value for the current and prior
tick. Assume that in the worst case, every new value gener-
ates a flaw for every other possible position in all timelines
in the execution frontier (i.e. 2Nr -1 flaws per new value).
This gives a maximum complexity for RESOLVEFLAWS of
2Nr × (2Nr-1) or O(Nr2). In the worst case, the procedure
COMPLETE calls RESOLVEFLAWS twice. However, if sim-
ply refining the execution frontier, this does not change the
cumulative number of flaws. Since iteration over the internal
timelines is linear in a value ≤ Nr, we have a complexity of
O(Nr2) for Algorithm 5.

In the worst case, synchronization of a reactor (Algorithm
3) incurs the following costs:

• O(Nr) to complete external timelines



• O(Nr2) to call COMPLETE the first time, which we as-
sume will fail.

• O(Pr) to RELAX the plan where P is the number of tokens
in the plan.

• O(Nr2) to call COMPLETE the second time, which we as-
sume will succeed.

• O(Nr) to publish observations
• O(Hr) to garbage collect where H is the number of tokens

in the plan that have passed into history.
Since synchronization of the agent is accomplished by it-

eration over the set of reactors, without cycling, we can state
the worst case time complexity for synchronization as:

O(s) = O(
∑
r∈R
N 2
r + Pr +Hr) (30)

Deliberation
Even if we do impose constraints on how deliberation is in-
tegrated into the control loop for each reactor, we do not de-
fine an algorithm for deliberation. The motives behind these
are twofold. First, we want deliberation to be preemptable
by synchronization. This is essential since maintaining the
integrity of agent state dominates deliberation over goals.
Moreover, we want to permit deliberation cycles that require
more than one tick to complete (i.e. where λr > 0). To en-
sure deliberation can be pre-empted we require that the pro-
cess be executable in incremental steps, where the longest
duration of a single step is within the margin of error for the
clock. This ensures a reactor does not miss a tick. Second,
we want deliberation to be bounded. We bound deliberation
with a maximum latency λr and a maximum lookahead πr.
Deliberation is either active or inactive. If deliberation is
inactive at the beginning of the agent control loop, a new
planning horizon, hr is defined (Equation 6). The operator
Fπ(r) will utilize this horizon to return the set of flaws for
deliberation. IfFπ(r) 6= ∅ then deliberation becomes active.
If a reactor becomes inactive in the current tick, it will not
be reconsidered for deliberation until the next tick. Deliber-
ation may complete immediately, even if λr > 0. However,
if it does not complete within λr ticks, it will be abandoned
as described in Algorithm 3: line 4. Goals that are necessar-
ily before hr will be rejected.

Dispatching
The motivation for dispatching goals from one reactor to an-
other is to enable efficient compositional control by sharing
as much information as necessary but as little information as
possible. Therefore, we exploit the latency and lookahead
values of reactors to bound the amount of information to be
sent from a user reactor to an owner reactor. If a token t is
to be dispatched from a reactor r, the following conditions
must hold:
• Deliberation is inactive. The justification for this require-

ment is that if planning is incomplete, then partial results
should not be dispatched since they might not be safe or
feasible.

• The token t is inserted on an external timeline of reactor
r: ∃E ∈ Er; t ∈ Q(E)

• The token t is in the dispatch window of the owning reac-
tor for s(E):

∃q ∈ R, owns(q, s(E)) :
t. start ∩[τ + λq, τ + λq + πq] 6= ∅

Experimental Results
In this section we evaluate the performance of synchroniza-
tion in partitioned and non-partitioned control structures.
When plan operations are constant time, we show that syn-
chronization is O(N2) in the worst case. Moreover, we
demonstrate that actual costs of synchronization are accrued
based on what changes at the execution frontier, making it
efficient in practice. We further demonstrate that since op-
erations on a plan are typically not constant time, but vary
in diverse and implementation dependent ways according to
plan size, partitioning control loops can substantially reduce
the net cost of synchronization and deliberation. We also de-
scribe results from an implementation of the principles de-
scribed in an embedded environment.

Lab Experiments
We implemented our

Deliberative 
reactor

Plan Database

Planner

DispatcherSynchronizer

Observations Goals

Observations Goals

Figure 1: The Structure of a De-
liberative Reactor

framework using the
EUROPA2 (?) and (?)
constraint-based tem-
poral planning library.
The foundation of our
implementation is a
Deliberative Reactor
whose structure is
shown in Figure 1. All
timelines and tokens
for a reactor are stored
in the plan database. The planner uses chronological-
backtracking refinement search to deliberate. The agent
invokes each reactor as defined in the Algorithm 1. For
our experiments, we define a single model shared by all
reactors. It contains a timeline with a single token type
given by the predicate p(start, end). Each experiment is
defined by the following problem parameters:
• I: The number of internal timelines per reactor.

• E: The number of external timelines per reactor. E is 0 for
base reactors (i.e. Rw).

• C: The number of relations to other timelines for any to-
ken. C is a measure of the connectedness between time-
lines and applies to internal timelines only.

• H: The agent horizon.

• D: The depth of the reactor control structure in the DAG
hierarchy. A reactor with depth 0 is a leaf of the depen-
dency graph. The duration of tokens on internal timelines
of a reactor at depth d is given by 2d.

• W: The width of the reactor control structure. There will
be W reactors at the same depth in the dependency graph.

• π: The lookahead defined as a multiple of the durations
of the tokens; the duration in turn were based on the depth
of the reactors in the hierarchy.



0 5 10 15 20 25 30
0

10
20

30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5  

Number of internal timelines (I)
Relations per timeline 

(C)
 

Sy
nc

hr
on

iz
at

io
n 

co
st

 (s
)

Figure 2: The relationship between synchronization time,
number of constraints and number of internal timelines.
W=1, D=0, E=0, H=50, π = 0, I ∈ [1, 30] and C ∈ [0, I−1]

Our experiments were executed on a MacBook Pro run-
ning at 2 Ghz.

Figure 2 shows results of a run with a single reactor con-
figuration where each problem instance runs for 50 ticks
with W=1, D=0, E=0, H=50, π = 0. A set of problem in-
stances are generated for combinations of I ∈ [1, 30] and C
∈ [0, I − 1]. There is no deliberation. CPU usage for syn-
chronizing the agent is measured at every tick, and averaged
over all ticks. The figure shows that average synchroniza-
tion cost increases linearly in I and C and quadratically as
the product of I and C.

An important impact of partitioning and information shar-
ing is shown in Figure 3. We used a two reactor configura-
tion where W=1, D=1, I=20, C=0, π = 0 and H=100 with E
∈ [0 20]. Intuitively the cost of sharing information will in-
crease with increasing number of external timelines. How-
ever, our results show that this cost increases linearly as a
function of the size of the overlap for a constant C.

0 2 4 6 8 10 12 14 16 18
0.03

0.04

0.05

0.06

0.07

Number of external timelines (E)

Sy
nc

hr
on

iz
at

io
n 

co
st

 (s
)

Figure 3: Information sharing via external timelines results
in increased cost of synchronization linear in E. W=1, D=1,
I=20, C=0, H=100,π = 0 and E ∈ [0 20]

Figure 4 shows the impact of partitioning on problem
solving, by varying the partitioned structure of an agent
without changing the number of timelines being synchro-
nized. We use 120 internal timelines spread evenly across
all reactors. For each problem instance, C=0, E=0, H=10,
D=0, π = 10 and W ∈ [1 120] and I ∈ [1 120] such that
W × I = 120. When W=1, all timelines are in a single re-
actor and when W=120, there is only 1 timeline per reac-
tor and the agent control structure is maximally partitioned.
Deliberation fills out the timeline with 1 token per tick for
π ticks with no search required. For each problem, the cu-
mulative synchronization and deliberation CPU usage was
measured. The number of state variables remains the same
as timelines are apportioned between reactors showing the
impact on problem solving by partitioning.

Figure 5(a) illustrates fluctuating synchronization costs
with variation in the the rate of change of timelines in the
agent. It also shows how partitioning impacts scalability.

0.5

1

De
lib

er
at

io
n 

co
st

 (s
)

 

 

12010654321
0

10

20

30

Number of reactors

Sy
nc

hr
on

iz
at

io
n 

co
st

 (s
)

 

 
Deliberation Synchronization

Figure 4: Synchronization costs associated with partition-
ing. C=0,E=0, H=10, D=0, π = 10 and W ∈ [1 120] and I ∈
[1 120] such that W × I = 120. All timelines are in a single
reactor when W=1

Each reactor has ten internal timelines, and one external
timeline with token duration of internal timelines set up to be
2d where d is the depth of the reactor in its hierarchy. W=1,
D=3, I=10, E=1, C=0, H=200 and π = 0. For each tick,
the synchronization time is measured. Partitioning allows us
to model the system so as to localize changes within a re-
actor to cap costs associated with synchronization. Further
timelines at higher levels of abstraction necessarily change
more slowly relative to timelines at lower levels of abstrac-
tion allowing partitioning to take effect. The figure also il-
lustrates an important artifact in dealing with real-world sys-
tem, namely the need to garbage collect the past. In the fig-
ure, one can see that the synchronization costs are trending
upwards early on, and then leveling off. Garbage collection
analyzes the executed plan and removes parts of the plan
that have no impact on current and future states. As stated
earlier, no details of garbage collection are presented in this
paper. For purposes of illustration we show garbage collec-
tion turned off in Figure 5(b).

0 50 100 150 200
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

# of ticks

Sy
nc

hr
on

iz
at

io
n 

co
st

 (s
)

(a) Fluctuating synchronization
costs with garbage collection

(b) Comparison with
garbage collection off

Figure 5: Synchronization cost per tick

Sea Trials
Our framework has been applied onboard an Autonomous
Underwater Vehicle (AUV) in coastal waters off Monterey
Bay, California. The agent controlled the AUV for a num-
ber of missions, including those to detect, survey and sample
dynamic ocean phenomenon over a specified area of more
than 20 Sq. Km. The agent planned, dispatched and mon-
itored all navigation and instrument control actions to ac-
complish a very high-level goal to conduct a volume survey.
The deployed agent was a 3-reactor hierarchical configura-
tion with 1 tick = 1 second. R[0] encapsulated the func-
tional layer and owned 7 state variables (λ0 = 0, π0 = 1).
R[1] handled navigation and instrument control, using all



state variables of R[0] and owning 19 additional state vari-
ables (λ1 = 1, π1 = 10). Finally, R[2] handled high-level
goal selection using 3 state variables of R[1] and owning
1 additional state variable (λ2 = 60, π2 = 21600). R[1]
and R[2] were instances of a Deliberative Reactor sharing
a single model and computational framework for all levels
of abstraction and all time scales of deliberation and reac-
tion. The agent ran on a 367 MHz EPX-GX500 AMD Geode
stack using Red Hat Linux. The worst case cost for synchro-
nization, involving a full relaxation of R[1], was 750 ms.
The average case cost of synchronization was 120 ms. All
deliberation timing limits were respected. Details are pro-
vided in (?), (?) and (?).

Discussion & Conclusion
The potential benefits of a unified framework that effi-
ciently synthesizes deliberation and reaction within an SPA
paradigm for robot control have been discussed extensively
in (?; ?; ?). To realize these benefits we have focussed on
improving the scalability of a unified approach by composi-
tion of the agent control structure through an explicit parti-
tioning model. Within this framework, information flow and
state synchronization is automatic. Furthermore, by intro-
ducing a clear distinction between synchronization of agent
state and deliberation over goals, and permitting them to be
interleaved, we allow a uniform representation in a single
model, without requiring a uniform rate of reaction for con-
trol. This offers substantial flexibility in agent design.

We have implemented our framework and shown that syn-
chronization, which is the core performance constraint of the
architecture, is an O(N 2) multiple of the cost of primitive
operations on a plan. We have demonstrated a partitioned
agent control structure in real-world scenarios utilizing such
a unified representational and computational. In conclusion,
the following are worth noting:
• For weakly coupled reactors, partitioning can offer sub-

stantial performance improvements as we have shown.
However this comes at the overhead of sharing informa-
tion. Exactly where the cross over point occurs is a subject
of further research. Techniques developed for partitioning
CSPs such as (?) for example, may be relevant in this con-
text.

• Plan failures can be localized. If a plan fails within a re-
actor, it is often possible to re-plan and recover without
propagating the failure to observing reactor(s).

• Reactor failures can be localized. If a reactor fails to syn-
chronize, or continually fails to plan, it will only impact
its dependent reactors. This suggest a failure mode where
system performance can degrade gracefully. The model
can be structured to compel a reactor to take certain con-
trol actions under such circumstances.
Results for our real-world domain are very encouraging

and we plan to extend the application of our framework to
increasingly demanding control problems for ocean explo-
ration.


